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Bayesian Constrained Local Models Revisited
Pedro Martins, João F. Henriques, Rui Caseiro and Jorge Batista

Abstract—This paper presents a novel Bayesian formulation for aligning faces in unseen images. Our approach revisits the
Constrained Local Models (CLM) formulation where an ensemble of local feature detectors are constrained to lie within the
subspace spanned by a Point Distribution Model (PDM). Fitting such a model to an image typically involves two main steps: a
local search using a detector, obtaining response maps for each landmark (likelihood term) and a global optimization that finds the
PDM parameters that jointly maximize all the detections at once. The so-called global optimization can be posed as a Bayesian
inference problem, where the posterior distribution of the shape (and pose) parameters can be inferred in a maximum a posteriori
(MAP) sense. This work introduces an extended Bayesian global optimization strategy that includes two novel additions: (1) to
perform second order updates of the PDM parameters (accounting for their covariance) and (2) to model the underlying dynamics
of the shape variations, encoded in the prior term, by using recursive Bayesian estimation. Extensive evaluations were performed
against state-of-the-art methods on several standard datasets (IMM, BioID, XM2VTS, LFW and FGNET Talking Face). Results
show that the proposed approach significantly increases the fitting performance.

Index Terms—Non-rigid face alignment, face registration, Constrained Local Models (CLM), Active Shape Models (ASM).
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1 INTRODUCTION

FACE alignment, or nonrigid face registration, is a
fundamental problem in computer vision. Typi-

cally, this kind of registration step, usually taken at
early stages, has a large impact on the robustness
and quality of later processes, playing a central role
in applications like: tracking, recognition (either iden-
tity or facial expression recognition), security, video
compression, human computer interaction, beyond
others. The main goal of face alignment consists of
locating, with accuracy, the semantic structural facial
landmarks such as eyes, nose, mouth, chin, eye brows,
etc (usually between a target image and a reference
frame). This problem has been studied for several
years, being particularly difficult to track subjects
with previously unseen appearance variations. These
variations can be highly complex, typically caused
by the rigid and non-rigid facial motion, changes in
identity, expression, illumination and occlusion.

Face alignment has received an increasing attention
over the years, specially since the introduction of the
Active Shape Model (ASM) [1] and later with the Ac-
tive Appearance Model (AAM) [2], becoming popular
to describe faces by finding the parameters of a Point
Distribution Model (PDM). The PDM is a simple,
yet efficient, linear model where (facial) shapes are
represented as a linear combination of ’eigenshapes’
around the mean. Most important, given enough data,
the PDM is able to generalize to unseen faces [3].

Several PDM fitting strategies have been proposed,
most of which can be categorized as being either
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holistic (generative) or patch-based (discriminative).
The holistic representations [2][4][5][6][7] model the
appearance of all image pixels describing the object.
In fact, matching a holistic model can be interpreted
as building synthetic versions of the target face.
By generating the expected appearance template, a
high registration accuracy can be achieved (under
favourable conditions). The AAMs [2][4] are probably
the most widely used generative technique where
parametric models of shape (the PDM) and appear-
ance are matched into new images. However, such
representation generalizes poorly when the object of
interest exhibits large amounts of variability, such as
the case of the human face under unseen variations,
due to the high dimensional representation of the
appearance (typically learned from limited data).

Recently, discriminative based methods,
such as the Constrained Local Models (CLM)
[1][8][9][10][11][12][13][14], have been proposed.
These approaches improve the model’s representation
capacity, as they account only for local correlations
between pixel values. In this paradigm, both shape
and appearance are combined by constraining an
ensemble of local feature detectors to lie within the
subspace spanned by the PDM. The CLM implements
a two step fitting stage: a local search and a global
optimization. The first step performs an exhaustive
local search using a feature detector, obtaining
response maps for each landmark (likelihood term).
Afterwards, a global optimization strategy finds the
PDM parameters that jointly maximize all detection
responses.

In this paper, we revisit the overall CLM frame-
work, in particular, we show that the so-called global
optimization can be posed as a Bayesian inference
problem, where the posterior distribution of the PDM
parameters can be inferred in a maximum a posteri-
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ori (MAP) sense. An extended Bayesian global opti-
mization strategy, that includes two main technical
insights, is introduced. First, the overall PDM global
alignment is formulated in terms of a Linear Dynamic
System (LDS). Accordingly, the model is able to per-
form second order updates of the PDM parameters,
accounting for the covariance of the shape and pose
parameters (which represents the confidence in the
current parameters estimate). Second, the underlying
dynamics of the shape variations, encoded by the
prior term, are explicitly modeled using recursive
Bayesian estimation. This means that our CLM can
tune its PDM to the new incoming data, becoming a
more accurate representation. An extensive and thor-
ough evaluation was performed in several standard
datasets, demonstrating that our CLM formulation
achieves a higher fitting performance. Additionally,
a general evaluation of face parts descriptors (local
landmark detectors) was also performed, where the
recently proposed Minimum Output Sum of Squared
Error (MOSSE) filters [15] stand out.

1.1 Related Work

Some of the most popular CLM optimization strate-
gies propose to replace the true response maps by
simple parametric forms (Weighted Peak Responses
[1], Gaussians Responses [13], Mixture of Gaussians
[16]) and perform the global optimization over these
forms instead of the original response maps. The
detectors are learned from training images of each of
the object’s landmarks. However, due to their small
local support and large appearance variation, they
can suffer from detection ambiguities. In [17], the
authors attempt to deal with these ambiguities by
nonparametrically approximating the response maps
using the mean-shift algorithm, constrained to the
PDM subspace (Subspace Constrained Mean-Shift -
SCMS). However, in the SCMS global optimization the
PDM parameters update is essentially a regularized
projection of the mean-shift vector for each landmark
onto the subspace of plausible shape variations. Since
a least squares projection is used, the optimization
is very sensitive to outliers (when the mean-shift
output is very far away from the correct landmark
location). This problem was mitigated later in [18]
where a robust norm is used to select the most reliable
landmarks.

Recently, a new paradigm has emerged. This new
strategy suggests to formulate the global alignment
as a Bayesian inference problem. The patch responses
can be embedded into a Bayesian inference prob-
lem, where the posterior distribution of the global
warp can be inferred in a MAP sense. The Bayesian
approach provides an effective fitting solution as it
combines in the same framework both the shape
prior (the PDM) and multiple sets of patch alignment
classifiers to further improve the accuracy. Previously,

Bayesian extensions of the original ASM formulation
have been proposed [8][19]. Likewise, the original
CLM formulation [20] and consequently the Convex
Quadratic Fitting approach [13] were extended into
Bayesian formulations [21], by using a basic inference
of the PDM parameters. Similarly, the later SCMS
[18], described previously, include an enhanced PDM
parameters update (maximum likelihood vs MAP).

Many other remarkable face alignment techniques
have been recently proposed. These methods, among
other features, include the use of fully non-parametric
shape models [22], part-based tree structured models
[23] (enabling face detection, pose estimation and
parts localization in the same framework), shape re-
gression updates [24][25], locally predict landmark
updates by regression [9][26][27][28], regressing the
PDM parameters from response maps [29], enhanced
general nonlinear regression [30] (learning a set of
steepest descent directions, not requiring the evalu-
ation of Jacobian or Hessian afterwards), alignment
on batches of images [31][32] and also discriminative
versions of AAMs [10][33][34][35]. We remark that
some of these methods rely on non-parametric shape
models [22] [24][23][28] or aim to enhance local land-
mark detection [26][29] or even are based in graphical
models inference [11][23] and therefore should not be
compared with ours. This paper aims to extend the
widely used CLM methodology, by using Bayesian
inference techniques while maintaining its linear PDM
regularization.

1.2 Contributions

This work presents a novel and efficient Bayesian
CLM global alignment technique that includes two
main additions: 1) to model the covariance of the
latent variables, which represents the confidence in
the current parameters estimate (explicitly maintain-
ing second order statistics of the shape and pose
parameters, instead of assuming them to be constant).
It is shown that the posterior distribution of the global
warp can be efficiently inferred by formulating the
global alignment in terms of a Linear Dynamical Sys-
tem (LDS); 2) An extension that explicitly models the
prior distribution, encoding the dynamic transitions
of the PDM parameters, by using recursive Bayesian
estimation. The prior distribution of the incoming new
data is modeled as being Gaussian where the mean
and covariance were assumed to be unknown and
treated as random variables.

The paper shows that aligning the PDM using
a Bayesian approach offers a significant increase in
performance, in both fitting still images and video se-
quences, when compared with state-of-the-art first or-
der forwards additive methods [1][13][17]. We confirm
experimentally that the MAP parameter update out-
performs the standard optimization strategies based
on maximum likelihood solutions (least squares). A
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comparison between several face parts descriptors
is also presented, including the recently proposed
Minimum Output Sum of Squared Error (MOSSE)
filters [15]. The MOSSE maps aligned training patch
examples into a desired output, producing correlation
filters that are notably stable. Results show that the
MOSSE outperforms others detectors, being particu-
larly well-suited to the task of generic face alignment.

Finally, extensive evaluations were performed on
several standard datasets (IMM [36], BioID [37],
XM2VTS [38], FGNET Talking Face [39] and the La-
beled Faces in the Wild (LFW) [40]) against state-of-
the-art CLM methods while using the same likelihood
source (local detectors).

Preliminary versions of this work were presented
earlier in [41] and later in [42]. Here a unifying
Bayesian CLM framework is described combining all
previous contributions. The experimental results were
largely extended, in particular, with the evaluation in
the challenging LFW [40] dataset. The results have
also been revised using more accurate error metrics.

1.3 Outline

The remainder of the paper is organized as follows:
section 2 explains the basics in ASM/CLM design,
in particular, the shape model and the local land-
mark detectors. Section 3 starts by describing the
overall Bayesian alignment goal, then it revisits some
likelihood extraction methods and finally it presents
our Bayesian global strategy. The prior distribution
in described in section 3.3 and the second order
update strategy in section 3.5. Section 4 shows the
main experimental results, including the local land-
mark detectors evaluation (section 4.2) and the fitting
and tracking performances of several global strategies
(section 4.3 and 4.4). Finally, section 5 summarizes the
paper and provides the conclusions.

2 BACKGROUND

2.1 Linear Shape Model

The shape s of a 2D Point Distribution Model (PDM)
[43] is represented by the vertex locations of a mesh,
with a 2v dimensional vector s = (x1, y1, . . . , xv, yv)

T .
The usual way of building a PDM requires a set of
shape annotated images that are previously aligned
in scale, rotation and translation by a Generalized
Procrustes Analysis. Afterwards, applying a Principal
Components Analysis (PCA) to the set of aligned ex-
amples, each shape can be expressed by the following
linear parametric model

s = s0 + Φbs + Ψq (1)

where s0 is the mean shape (also known as the base
mesh), Φ is the shape subspace matrix holding n
eigenvectors (or the modes of deformation that retain

Fig. 1: The Constrained Local Model combines an ensemble
of local feature detectors whose locations are constrained
to be in a subspace spanned by a linear model. The novel
Bayesian global optimization strategy (BCLM) jointly com-
bines all detectors scores, in a MAP sense, using second
order updates of the parameters and modelling the prior
distribution. The image shows the local search regions for
some highlighted landmarks, followed by a column with the
detectors responses and their local detectors, respectively.

a given amount of variance, e.g. 95%), bs is a n dimen-
sional vector of shape parameters representing the
mixing weights and Ψ is a 2v×4 matrix holding a spe-
cial set of eigenvectors that linearly model the 2D pose
[4], function of the q = [s cos(θ)− 1, s sin(θ), tx, ty]T

pose parameters (s, θ, tx, ty are the scale, rotation and
translations w.r.t. the base mesh, respectively). Please
refer to [43] for additional details in PDMs.

2.2 Local Detectors

The appearance model of a CLM consists of an en-
semble of v expert local detectors [1][20][17][41][42]
whose locations are regularized by the linear shape
model as described in the previous section (figure 1).

The correlation of the ith landmark detector, evalu-
ated at the pixel location xi = (xi, yi), is given by

Di(I(xi)) = hTi I(xi) (2)

where hi is a linear detector and I(xi) is the sur-
rounding L× L support region (i.e. the image patch,
denoted by Ωxi

). Note that these landmark detectors
are usually designed to operate at a given scale. The
ASM/CLM framework deals with this by including
a warp normalization step, in particular, a similarity
transformation into the base mesh. At this stage the
detector score must be converted into a probability
value. The simplest solution is to use a logistic func-
tion. Defining ai to be a binary variable that denotes
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correct landmark alignment, the probability of pixel
zi ∈ Ωxi being aligned is given by

pi(zi) = p(ai = 1|Di, I(zi)) =
1

1 + e−aiβ1Di(I(zi))+β0

(3)
where β1 and β0 are the regression coefficient and
intercept, respectively (both β1 and β0 are usually
found by cross-validation). In the previous, and for
the sake of simplicity, pi(zi) is just used as a con-
densed representation for the response map. Note that
a proper probability is used, always non-negative and
p(ai = 1|I(zi)) + p(ai = −1|I(zi)) = 1.

3 GLOBAL PDM OPTIMIZATION

The deformable model fitting goal is formulated as
a global shape alignment problem using Bayesian
inference techniques. This section describes the pro-
posed (Bayesian) global optimization strategy where
two main additions are included. The first formu-
lates the global alignment in a maximum a posteriori
(MAP) sense, by means of second order updates of
the PDM parameters. The global optimization uses the
covariance of the parameters, effectively accounting
for previous uncertainty. The second novelty consists
in explicitly update the prior distribution, i.e. to learn
the way the PDM parameters change.

3.1 The Alignment Goal

Given a 2v vector of observed positions y, obtained
from the response maps, the goal is to find the optimal
set of parameters b∗s that maximizes the posterior
probability of being its true position (i.e. PDM being
aligned). Using a Bayesian approach, the optimal
shape parameters are defined as

b∗s = arg max
bs

p(bs|y) ∝ p(y|bs)p(bs) (4)

where y is the observed shape, p(y|bs) is the like-
lihood term and p(bs) is a prior distribution over
all possible configurations. The complexity of the
problem, in Eq. 4, can be reduced by making some
simple assumptions. Firstly, conditional independence
between landmarks can be assumed by simply sam-
pling each landmark independently. Secondly, it can
also be considered that we are facing an approximate
solution to the true parameters (b ≈ b∗s). Combining
these approximations, the Eq. 4 can be rewritten as

p(b|y) ∝

(
v∏
i=1

p(yi|b)

)
p(b|b∗k−1) (5)

where yi is the ith landmark coordinates and b∗k−1 is
the previous optimal estimate of b.

3.2 The Likelihood Term
The likelihood term, including the PDM model in
Eq. 1, can be written by the following convex energy
function:

p(y|b) ∝ exp

−1
2

(y− (s0︸ ︷︷ ︸
∆y

+Φb))TΣ−1
y (y− (s0 + Φb))


(6)

where ∆y is the difference between the observed and
the mean shape and Σy is the uncertainty of the
spatial localization of the landmarks (2v × 2v block
diagonal covariance matrix). Summarizing, from the
probabilistic point of view, the likelihood term follows
a Gaussian distribution given by

p(y|b) ∝ N (∆y|Φb,Σy). (7)

3.2.1 Local Optimization Strategies
Several local strategies can be used to represent the
true response maps either by parametric or non-
parametric probabilistic models. These local strategies
consists of extracting the likelihood parameters (both
the observed shape y and the landmark uncertainty
covariance Σy) from each probabilistic model repre-
senting the response map.

The parameters yi and Σyi
(candidates to the ith

landmark) can be found by maximizing the expres-
sion

arg max
yi,Σyi

∑
zi∈Ωyc

i

pi(zi)N (zi|yi,Σyi
) (8)

where pi(zi), defined in Eq. 3, represents the proba-
bility of a candidate pixel zi being aligned (i.e. the
response map) and Ωyc

i
is the patch support region

centered at yci , which represents the current landmark
estimate. Several strategies can be used to perform
this optimization:

Weighted Peak Response (WPR) - The simplest
solution is to take the spatial location where the re-
sponse map has a higher score [1]. The new landmark
position is then weighted by a factor that reflects the
peak confidence (the uncertainty is inverse propor-
tional to the peak value). Formally, the WPR solution
is given by

yWPR
i = max

zi∈Ωyc
i

(pi(zi)) , ΣWPR
yi

= diag(pi(yWPR
i )−1)

(9)
that is equivalent to approximate each response map
by an isotropic Gaussian given by N (zi|yWPR

i ,ΣWPR
yi

).
Gaussian Response (GR) - The previous approach

was extended in [13] to approximate the response
maps by a full Gaussian distribution N (zi|yGR

i ,ΣGR
yi

).
This is equivalent to fit a Gaussian density to
weighted data. Defining d =

∑
zi∈Ωyc

i

pi(zi), the so-
lution is given by

yGR
i =

1
d

∑
zi∈Ωyc

i

pi(zi) zi (10)
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ΣGR
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi − yGR
i )(zi − yGR

i )T . (11)

Kernel Density Estimator (KDE) - The response
maps can be approximated by a nonparametric rep-
resentation, namely using a Kernel Density Estima-
tor (KDE) (isotropic Gaussian kernel with a band-
width σ2

h). Maximizing over the KDE is typically
performed by using the well-known mean-shift al-
gorithm [44][17]. The kernel bandwidth σ2

h is a free
parameter that exhibits a strong influence on the
resulting estimate. This problem can be addressed by
an annealing bandwidth schedule. It can be shown
[45] that there exists a σ2

h value such that the KDE
is unimodal. As σ2

h is reduced, the modes divide
and the smoothness of KDE decreases, guiding the
optimization towards the true objective. Formally, the
ith annealed mean-shift landmark update is given by

yKDE(τ+1)
i ←

∑
zi∈Ωyc

i

zi pi(zi) N (yKDE(τ)
i |zi, σ2

hj
I2)∑

zi∈Ωyc
i

pi(zi) N (yKDE(τ)
i |zi, σ2

hj
I2)

(12)
where I2 is a two-dimensional identity matrix and
σ2
hj

represents the decreasing bandwidth schedule.
The KDE uncertainty error consists on computing the
weighted covariance using

ΣKDE
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi−yKDE
i )(zi−yKDE

i )T . (13)

The qualitative differences between the three local
optimization strategies (WPR, GR or KDE) are shown
in figure 2. Notice that, by default, the global approach
deals with mild occlusions, i.e. when a landmark
region is under occlusion, typically the response map
exhibits a multimodal behavior (see the examples
in figure 2). Assuming that a KDE local strategy is
used, the landmark update will select the nearest
mode, according to the bandwidth (Eq. 12), and the
covariance of that landmark (Eq. 13) will be inherently
large, modeling a high localization uncertainty. The
global optimization stage then jointly combines all
uncertainties (MAP sense), dealing with the occlusion.
Similarly, to deal with large occlusions, a minor tweak
is required. One can simply set a large covariance Σyi

for the occluded landmarks.

3.3 The Prior Term

Faces are special nonrigid structures described by con-
tinuous dynamic transitions that deform continuously
in time. In the Bayesian paradigm, the prior term can
be used to encode this underlying dynamic of the
shape. In following sections two different approaches
are considered: defining the prior by the standard
PDM belief (section 3.3.1) or effectively modeling
it, keeping the prior distribution always up to date
(section 3.3.2).

3.3.1 PDM based Prior Term
The prior term, according to the approximations
taken, can be written as

p(bk|bk−1) ∝ N (bk|µb,Σb) (14)

where µb = bk−1 and Σb = Λ with Λ =
diag(λ1, . . . , λn), being the shape parameters covari-
ance and λj denotes the PCA eigenvalue of the jth

mode of deformation. This form of prior assump-
tion, simple enough for most cases, can be largely
improved.

3.3.2 Modeling the Prior Term
The previous section defines the prior term to follow
a Gaussian distribution with a given mean (µb) and
covariance (Σb). These parameters are established in
the PDM building process and remain unchanged
afterwards.

In this section let’s consider the mean µb and covari-
ance Σb of the data to be unknown and modeled as
random variables ([46] pag.87-88). Recursive Bayesian
estimation can be applied to infer the parameters of
the prior distribution in Eq. 14. Defining b as an
observable vector, the Bayes theorem tells us that the
joint posterior density can be written as

p(µb,Σb|b) ∝ p(b|µb,Σb)p(µb,Σb). (15)

Performing recursive Bayesian estimation with new
observations requires that joint prior density p(µb,Σb)
should have the same functional form than the joint
posterior density p(µb,Σb|b). The joint prior density,
conditioning on the covariance Σb, can be written as

p(µb,Σb) = p(µb|Σb)p(Σb). (16)

The previous condition is true if we assume that
the covariance follow an inverse-Wishart distribution
and µb|Σb follow a normal distribution (the conjugate
prior for a Gaussian with known mean is an inverse-
Wishart distribution [46])

Σb ∼ Inv-Wishartυk−1(Λ−1
υk−1

) (17)

µb|Σb ∼ N (θk−1,
Σb

κk−1
) (18)

where υk−1 and Λk−1 are the degrees of freedom
and scale matrix for the inverse-Wishart distribution,
respectively. θk−1 is the prior mean and κk−1 is the
number of prior measurements. According with these
assumptions, the joint prior density becomes

p(µb,Σb) ∝ |Σb|−(υk−1+n)/2+1

exp
(
− 1

2
tr(Λk−1Σ−1

b )− κk−1
2

(µb − θk−1)TΣ−1
b (µb − θk−1)

)
(19)

a normal-inverse Wishart distribution (the product
between a Gaussian and an inverse-Wishart). We re-
call that n is the number of shape parameters.

The inference step in Eq. 15 involves a Gaussian
likelihood and the joint prior p(µb,Σb), resulting in
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Fig. 2: Qualitative comparison between the three local optimization strategies. The WPR simply chooses the maximum
detector response. The GR approximates the response map by a full Gaussian distribution and KDE uses the mean-shift
algorithm to move to the nearest mode of the density. Its uncertainty covariance is found using the entire response map
centered at the found mode. The two examples in the right show patches under occlusion (typically multimodal responses).

a joint posterior density of the same family (con-
jugate prior for a Gaussian with unknown mean
and covariance), i.e. following a normal inverse-
Wishart(θk, Λk/κk; υk, Λk) distribution with the hy-
perparameters [46]:

υk = υk−1 +m, κk = κk−1 +m (20)

θk =
κk−1

κk−1 +m
θk−1 +

m

κk−1 +m
b (21)

Λk = Λk−1 +
m∑
i=1

(bi − b)(bi − b)T +

κk−1m

κk−1 +m
(b− θk−1)(b− θk−1)T (22)

where b is the mean of the new samples, m the
number of samples used to update the model. The
posterior mean θk is a weighted average between the
prior mean θk−1 and the sample mean b. The posterior
degrees of freedom are equal to prior degrees of
freedom plus the sample size. In the present case, the
second term in Eq. 22 (

∑m
i=1 · · · ) is null because the

model is updated with one sample each time (m = 1).
Marginalizing over the joint posterior distribution

p(µb,Σb|b) (Eq. 15) with respect to Σb gives the
marginal posterior distribution for the mean of the
form

p(µb|b) ∝ tυk−n+1(µb|θk, Λk/(κk(υk − n+ 1))) (23)

where tυk−n+1 is the multivariate Student-t distribu-
tion with υk − n+ 1 degrees of freedom.

Using the expectation of marginal posterior distri-
bution p(µb|b) as the model parameters at time k,
we get (see table of expectation for multivariate t-
distributions e.g. [46] pag.576)

µbk
= E(µb|b) = θk. (24)

Similarly, marginalizing over the joint posterior
distribution p(µb,Σb|b) with respect to µb gives the
marginal posterior distribution p(Σb|b) that follows
an inverse Wishart distribution. The expectation for
marginal posterior covariance is (see table of expecta-
tion for inverse Wishart distributions e.g. [46] pag.575)

Σbk
= E(Σb|b) = (υk − n− 1)−1Λk. (25)

A similar approach is used to estimate the pose pa-
rameters (qk). The parameters of the normal inverse-
Wishart distribution (Eqs. 20, 21 and 22) are kept up
date and the updates for the µqk

and Σqk
are given

by the according expectations.

3.4 The MAP Global Alignment

An important property of Bayesian inference is that,
when the likelihood and the prior are Gaussian dis-
tributions the posterior is also Gaussian [47]. Addi-
tionally, the conditional distribution p(y|bk), in Eq.
6, has a mean that is a linear function of bk and a
covariance which is independent of bk. Following the
Bayes’ theorem for Gaussian variables, and consider-
ing p(bk|bk−1) a prior Gaussian distribution for bk
and p(y|bk) a likelihood Gaussian distribution, the
posterior distribution takes the form ([47], pag 90)

p(bk|y) ∝ N (bk|µF,ΣF) (26)

ΣF = (Σ−1
b + ΦTΣ−1

y Φ)−1 (27)

µF = ΣF(ΦTΣ−1
y ∆y + Σ−1

b µb). (28)

This could be a possible solution to the global align-
ment optimization (b∗s = µF, solution proposed in
[21]). In the mentioned technique, Eqs. 28 and 27 are
iteratively reused, where the subscript k represents
the iteration number, along with the response maps
pi(zi) evaluated at the new updated locations, un-
til converge. The previous approach can be largely
improved by additionally modeling the covariance of
the latent variables (bk) which allows to account for
the amount of confidence in the current parameters
estimate (i.e. the amount of uncertainty in bk−1 should
be considered in the estimate of bk).

3.5 Second Order Global Alignment

The MAP global alignment solution can be inferred
by a Linear Dynamical System (LDS). The LDS is the
ideal technique to model the covariance of the latent
variables and solve the basic approach limitations.
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The LDS is a simple approach that recursively com-
putes the posterior probability using incoming Gaus-
sian measurements and a linear model process, taking
into account all the available measures. The state and
measurement equations of the LDS, according to the
PDM alignment problem, can be written as

bk = Abk−1 + q (29)
∆y = Φbk + r (30)

where the current shape parameters bk are the hidden
state vector, q ∼ N (0,Σb) is the additive dynamic
noise, ∆y is the observed shape deviation that is
related to the shape parameters by the linear relation
Φ (Eq. 1) and r is the additive measurement noise
following r ∼ N (0,Σy). The previous shape estimated
parameters bk−1 are connected to the current param-
eters bk by an identity relation plus noise (A = In).

3.5.1 Inference using the LDS
We highlight that the final step of the LDS derivation
consists of a Bayesian inference step [47] (using Bayes’
theorem for Gaussian variables, Eqs. 27 and 28), where
the likelihood term is given by Eq. 7 and a prior that
follows N (AµS

k−1,Σ
P
k−1) with

ΣP
k−1 = Λ + AΣS

k−1AT . (31)

From these equations we can see that the LDS keep up
to date the uncertainty on the current estimate of the
parameters. The LDS recursively computes the mean
and covariance of the posterior distributions of the
form

p(bk|∆yk, . . . ,∆y0) ∝ N (bk|µS
k,Σ

S
k) (32)

with the posterior mean µS
k and covariance ΣS

k given
by the LDS formulas:

K = ΣP
k−1ΦT (ΦΣP

k−1ΦT + Σy)−1 (33)

µS
k = AµS

k−1 + K(∆y− ΦAµS
k−1) (34)

ΣS
k = (In −KΦ)ΣP

k−1. (35)

3.5.2 Second Order Inference with Prior Modeling
Unfortunately, the previously LDS inference only ap-
plies to the simple prior assumption (section 3.3.1).
When considering the more evolved prior form (sec-
tion 3.3.2), Eq. 29 is no longer valid (where the adap-
tive prior term is now N (µbk

,Σbk
+ Σk−1) instead of

N (µS
k−1,Σ

P
k−1)), therefore the inference step falls back

to a more general approach given by

p(bk|∆yk, . . . ,∆y0) ∝ N (bk|µk,Σk) (36)

with

Σk =
(

(Σbk
+ Σk−1)−1 + ΦTΣ−1

y Φ
)−1

(37)

µk = Σk

(
ΦTΣ−1

y ∆y + (Σbk
+ Σk−1)−1µbk

)
. (38)

Precompute: The PDM s0, Φ, Λ and local detectors H∗
i

Initial estimate of the shape/pose parameters and their
covariances (b0,Σb0)/(q0,Σq0

)
repeat

•Extract likelihood from image:
- Backwarp input image to base mesh using qk
- Generate shape at base mesh: s = s0 + Φbk
for Landmark i = 1 to v do

Evaluate M detector(s) response(s) (Eq. 3)
Find the likelihood parameters yi and Σyi

- use WPR, GR or KDE local strategy (sec. 3.2.1)
end

•Estimate the pose parameters:
- Update hyperparameters υq0 , κ

q
0, θ

q
0 , Λ

q
0(Eqs.20, 21, 22)

- Expectation of the prior parameters (µqk
,Σqk

)
- Pose observation: ∆yq = y− s0

- Posterior parameters qk and Σqk
(Eqs. 40, 39)

•Estimate the shape parameters:
- Update hyperparameters υb0, κ

b
0, θ

b
0, Λ

b
0 (Eqs.20, 21, 22)

- Expectation of the prior parameters (µbk
,Σbk

)
- Shape observation: ∆yb = y− s0 −Ψqk
- Posterior parameters bk and Σbk

(Eqs. 40, 39)
until ||bk − bk−1|| ≤ ε or maximum number of iterations ;

Algorithm 1: Overview of the Bayesian Con-
strained Local Models (BCLM) method.

The optimal shape parameters b∗s that maximize the
overall goal, in Eq. 4, are given by µk (or alternatively
by µS

k if the simple prior is used). Similarly, in order to
estimate the pose parameters (qk), the same paradigm
is also applied. The main difference in this case is that
the observation matrix becomes Ψ (a linear represen-
tation for the 2D pose, in Eq. 1).

3.6 Multiple Local Detectors per Landmark
An useful strategy aimed to increase the overall fit-
ting accuracy is to include multiple landmark detec-
tors for each landmark [48][49][50]. In the Bayesian
framework these different likelihood sources (a.k.a.
Bayesian fusion of detectors), can be seamlessly in-
corporated into the same model. In general, by com-
bining the usage of multiple (M ) local detectors with
the second order inference and prior term modelling
(section 3.3.2), results in a Gaussian posterior distri-
bution with the parameters given by

Σ′k =

(
(Σbk

+ Σk−1)−1 + ΦT
M∑
m=1

(
Σ−1

ym

)
Φ

)−1

(39)

µ′k = Σ′k

(
ΦT

M∑
m=1

(
Σ−1

ym
∆ym

)
+ (Σbk

+ Σk−1)−1µbk

)
(40)

where ∆ym, Σym
are the multiple likelihood observa-

tions that are extracted from multiple response maps.
The algorithm 1 describes the overall global opti-

mization here referred as Bayesian Constrained Local
Models (BCLM) in its most generic form (i.e. second
order inference while modelling the prior term and
including multiple detections per landmark). Notice
that: when the simple prior term is used, the hyper-
parameters updates steps are not required (Eqs. 20,
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21, 22) and the posterior parameters in Eqs. 40 and 39
reduce to the LDS formulas (Eqs. 34 and 35).

The BCLM training stage consists of learning the
PDM, which includes the base mesh s0, the linear
shape subspace Φ, their eigen values diagonal matrix
Λ, the linear pose subspace Ψ and the evaluation
of all the local landmark detectors H∗i (i = 1, . . . , v
landmarks). The model requires an initial estimate
for the shape, the pose parameters and their respec-
tive covariances. Typically, the mean shape is used
(b0 = 0), the pose parameters q0 are given by a
face detector [51] (scale and translation adjusting the
base mesh to the detection), the covariance of the
shape parameters is initialized as a diagonal matrix
with the average PDM variance (λ = 1

n

∑
j λj) or

Σb0 = diag(λ) and finally, the covariance of the pose
parameters starts as Σq0

= diag([0.1 0.01 10 10]2).
Two different joint posterior densities are inferred
(p(µb,Σb|b) and p(µq,Σq|q)), according, two sets of
hyperparameters of the normal inverse-Wishart dis-
tributions are used. They are initialized as υb0 = 2n,
κb0 = 1, θb0 = b0, Λb0 = nΛ, and υq0 = 8, κq0 = 1, θq0 = q0,
Λq0 = 4×diag([0.05 0.005 5 5]2)) where the upperscripts
b and q refers to shape and pose, respectively.

The model fitting itself is similar, with some minor
modifications, to a standard CLM search. For each
iteration, the input image is backwarped using the
current pose parameters estimate, then local detectors
are used to evaluate every response map. One of the
local strategies (WPR, GR or KDE) is selected to find
a new set of landmark candidates (and their uncer-
tainty), the hyperparameters of the normal inverse-
Wishart distributions are updated with the incoming
example, then the parameters of the current prior dis-
tribution are evaluated (by the expectation of the joint
posterior distributions) and finally the second order
global optimization is used to find the new set of
shape and pose parameters for the next iteration (Eqs.
40 and 39). This process is repeated until convergence,
when both shape and pose parameters do not change
substantially.

The performance of our approach (BCLM) is com-
parable to ASM [1], CQF [13] or SCMS [17] depending
of the local strategy used (refereed, from now on, as
BCLM-WPR, BCLM-GR or BCLM-KDE, respectively).
The bottleneck, like in any other CLM approach, lies
on the evaluation of the response maps (M x 3ms x
number landmarks), although keep in mind that it can
be done in parallel.

3.7 Hierarchical Model Search

When the local response maps are approximated by
KDE representations (section 3.2.1), the overall align-
ment can be done using a slightly different annealing
approach that is described here as an hierarchical
search strategy. The standard search iteratively uses
the mean-shift algorithm with a kernel bandwidth

TABLE 1: Comparative view between the standard first or-
der, the second order (proposed) and the BCLM (proposed)
inference techniques. Secs. 3.4, 3.5.1 and 3.5.2, respectively.

1st order 2nd order BCLM
Likelihood N (Φb,Σy) N (Φb,Σy) N (Φb,Σy)

Prior N (0,Σb) N (µb,Σb + ΣS
k−1) N (µbk

,Σbk
+ Σk−1)

Posterior N (µF,ΣF) N (µS
k
,ΣS

k) N (µk,Σk)

relaxation, e.g. σ2
hj

= [15, 10, 5, 2], followed by a global
optimization step. However, the bandwidth annealing
schedule can be combined within the global optimiza-
tion steps. This solution consists of multiple levels
of fixed bandwidth mean-shifts followed by global
optimization steps (i.e. the annealing is performed
between hierarchical levels).

3.8 Summary

Table 1 shows a comparative probabilistic view be-
tween all the described methods, namely: the first
order, the second order and the BCLM (also sec-
ond order) inference techniques. The likelihood term
N (∆y|Φb,Σy), which is extracted from the response
maps, remains the same for all approaches. In general,
the Bayes’s theorem of Gaussian variables, ensures
the all methods have Gaussian posterior distributions.
The main diference between them comes down to
the prior distribution. The most basic method (1st

order) only considers the usual PDM assumption (a
constant prior). The second order method enhances
the previous by accounting with an adaptive prior.
Finally, the BCLM further improves the second order
technique by continuously updating µbk

and Σbk
.

4 EVALUATION RESULTS

The experiments evaluate, in the first place, the per-
formance of the local landmark detectors. Afterwards,
the new Bayesian global optimization (BCLM) is put
to test while using the best detector. All the exper-
iments were conducted on several databases with
publicly available ground truth: 1) The IMM [36]
database that consists on 240 annotated images of
40 different human faces presenting different head
pose, illumination, and facial expression (58 land-
marks). 2) The BioID [37] dataset that contains 1521
images, each showing a near frontal view of a face
of one of 23 different subjects (20 landmarks). 3) The
XM2VTS [38] database has 2360 images of frontal
faces from 295 subjects (68 landmarks). 4) The tracking
performance was evaluated on the FGNet Talking
Face (TF) [39] video sequence that holds 5000 frames
of video of an individual engaged in a conversa-
tion (68 landmarks). To the best of our knowledge
this is the only dataset with fully landmark annota-
tions in a video sequence. 5) Finally, evaluation was
also performed using the Labeled Faces in the Wild
(LFW) [40] database that contains images taken under
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Fig. 3: Distribution of face asymmetry in the evaluated
datasets.

variability in pose, lighting, focus, facial expression,
occlusions, different backgrounds, etc. Qualitatively,
both XM2VTS and BioID focuses mainly on variations
in identity. Nevertheless, they exhibit large diversity
in appearance due to facial hair, glasses, ethnicity
and other subtle changes. The IMM is the smallest
database, however it presents a large variation in head
pose, illumination, and spontaneous facial expressions
along several individuals. Unlike the previous, the
LFW database is an extremely challenging database,
completely taken in wild.

Inspired by [22], the overall face alignment chal-
lenge was evaluated in the different datasets, by
assessing a measure of facial asymmetry for each
image. Natural symmetric features such as the eyes
out corners and mouth corners were reflected about a
vertical line passing the nose center and the (normal-
ized) average distances between them are computed.
This metric holds a lower value (close to zero) in near
frontal faces. Figure 3 shows this asymmetry measure
over the evaluated datasets. We can see that both
BioID and XM2VTS sets hold more symmetric images
(more frontal), by other hand, the IMM and LFW have
indeed more challenging images with a lot more 3D
pose variability, therefore more difficult to align.

4.1 The Local Detector - MOSSE Filter

The Minimum Output Sum of Squared Error (MOSSE)
filter, recently proposed in [15], finds the optimal filter
that minimizes the Sum of Squared Differences (SSD)
to a desired correlation output. Briefly, correlation can
be computed in the frequency domain as the element-
wise multiplication of the 2D Fourier transform (F) of
an input image I with a filter H, also defined in the
Fourier domain as

G = F{I} �H∗ (41)

where the � symbol represents the Hadamard prod-
uct and (∗) is the complex conjugate. The correla-
tion value is given by F−1{G}, the inverse Fourier
transform of G. The MOSSE finds the filter H, in the
Fourier domain, that minimizes the SSD between the
actual output of the correlation and the desired output

of the correlation, across a set of N training images,

min
H∗

N∑
j=1

(F{Ij} �H∗ −Gj)
2 (42)

where G is obtained by sampling a 2D Gaussian
uniformly. Solving for the filter H∗ yields the closed
form solution

H∗ =

∑N
j=1 Gj �F{Ij}∗∑N

j=1 F{Ij} � F{Ij}∗ + ε
(43)

where ε is a regularization parameter introduced to
prevent divisions by zero.

The MOSSE filter maps all aligned training patch
examples to an output, G, centered at the feature
location, producing notably stable correlation filters.
Each sample Ij is normalized to have zero mean and a
unitary norm and it is multiplied by a cosine window
(required to solve the Fourier Transform periodicity
problem) which also has the benefit of emphasizing
the target center. These filters have a high invariance
to illumination changes, due to their null DC compo-
nent, and revealed to be highly suitable to the task of
generic face alignment.

4.2 Evaluating Local Detectors

Three landmark expert detectors were evaluated. The
most used detector [13][17] is based on a linear clas-
sifier built from aligned (positive) and misaligned
(negative) grey level patch examples. The score of the
ith linear detector is given by

Dlinear
i (I(yi)) = wT

i I(yi) + bi, (44)

with wi being the linear weight, bi the bias constant
and I(yi) a vectorized patch of pixel values sampled
at yi. Similarly, a quadratic classifier can be used

Dquadratic
i (I(yi)) = I(yi)

TQiI(yi) + LTi I(yi) + bi (45)

with Qi and Li being the quadratic and linear terms,
respectively. Finally, the MOSSE filter correlation
(which is still a linear detector) gives

DMOSSE
i (I(yi)) = F−1{F{I(yi)} �H∗i } (46)

where H∗i is the MOSSE filter from Eq. 43.
Both linear and quadratic classifiers (linear-SVM

[52] and Quadratic Discriminant Analysis) were
trained using images from the IMM [36] dataset with
144 negative patch examples (for each landmark and
image) being misaligned in translation by 12 pixels
in x and y direction. The MOSSE filters were built
using aligned patch samples with size 128 × 128 (a
power of two patch size is used to speed up the FFT
computation), however only a 40× 40 subwindow of
the output is considered. The desired output G (Eq.
43) is set to be a 2D Gaussian function centered at the
landmark with 3 pixels of standard deviation.
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(b) XM2VTS database [38]
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Fig. 4: Fitting performance curves comparing different detectors (linear, quadratic and MOSSE filters) in the IMM, XM2VTS,
BioID and LFW database, respectively. The AVG represents the average location provided by the initial estimate [51].

Later, in section 4.3, the performance of the fusion
of detections is also evaluated. The additional detector
is still a MOSSE filter built with the same settings but
using the magnitude of image gradients (‖∇Ij‖).

The global optimization method that best evalu-
ates the detectors performance is the approach that
relies the most in the output of the detector, i.e.,
the Active Shape Models (ASM) [1]. The results are
presented in the form of fitting performance curves,
which were also adopted by [53][9][20][13][17]. These
curves show the percentage of faces that achieved
convergence with a given error amount. Following
common practice [9][12][26], the error metric is given
by the mean error per landmark as fraction of the
inter-ocular distance (measured between the center of
the eyes), deyes, as

em(s) =
1

v deyes

v∑
i=1

‖si − sgt
i ‖ (47)

where sgt
i is the location of ith landmark in the ground

truth annotation (and v the number of landmarks).
The figure 4 shows the fitting performance curves

that compare the three kinds of detectors using the
ASM [1] optimization and our second order global
BCLM technique using a Weighted Peak Response
strategy (BCLM-WPR) without modelling the prior
distribution. In fact, this method appears in the
evaluation charts as DBASM-WPR (Discriminative
Bayesian Active Shape Models) mainly because it
is the original referenced name [41]. This approach
relies in the standard PDM based prior (section 3.3.1)
and uses the second order LDS inference technique
(section 3.5.1). The initial estimate is also included in
the evaluation. The presented AVG ’curve’ represents
the initial 2D mesh location provided by the Adaboost
[51] face detector.

The results provide several conclusions: 1) the
MOSSE filter always outperforms the others, specially
when using simpler optimization methods; 2) the
second order optimization improves the results even
using simple detectors; 3) maximum performance can
be achieved by using the MOSSE detector combined
with the proposed optimization. The results show that

the use of MOSSE filters is an interesting solution that
works well in practice and is particularly suited to the
detection of facial parts. However it is important to
stress that it is not crucial for the performance of the
Bayesian formulation. Our global optimization still
improves performance when using standard linear-
SVM detectors.

4.3 Evaluating Global Optimization Strategies
Performing a fair comparison requires that all the
evaluated optimization strategies use the same local
detector (same likelihood source), all methods are reg-
ularized by the same linear shape model (PDM) and
they always start from the same initial estimate. In
short, the BCLM optimization strategy was evaluated
against similar CLM alignment solutions. The pro-
posed BCLM and BCLM-Hierarchical methods (sec-
tion 3.7) are compared against the ASM [1], CQF [13],
BCQF [21], GMM [16] using 3 Gaussians (GMM3),
SCMS (ML) [17] and finally the SCMS (MAP) [18].
The influence of modelling the prior distribution is
included in the evaluation when comparing DBASM
[41] with BCLM. Like in section 4.2, DBASM matches
the proposed BCLM without the prior distribution
modeling. The DBASM method uses the prior defined
in section 3.3.1 whereas BCLM relies in the prior
distribution defined in section 3.3.2. The BCQF is a
maximum a posteriori version of CQF, likewise SCMS
(ML) and SCMS (MAP) represent a maximum likeli-
hood and maximum a posteriori versions of SCMS,
respectively.

Once more, note that the BCLM optimization can
be used with different local strategies to approximate
the response maps (section 3.2.1), represented by the
suffixes -WPR, -GR or -KDE. In fact, it is worth
recall that the ASM [1], CQF [13] and SCMS [17]
use as local optimizations the WPR, GR and KDE
strategies, respectively. In all the local KDE methods,
a bandwidth schedule of σ2

h = (15, 10, 5, 2) is used
(which applies to SCMS, DBASM and BCLM).

Both the shape model (v = 58 landmarks) and
the MOSSE filters (proven to be the better detector)
have been built with training images from the IMM
[36] dataset. However, the results on this dataset use
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(a) IMM database [36]
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(b) XM2VTS database [38]
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(c) BioID database [37]
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(d) LFW database [40]

Reference em = 0.1 (vertical line) IMM (240 images) XM2VTS (2360 images) BioID (1521 images) LFW (13233 images)
ASM [1] 72.3 80.3 55.5 52.2
DBASM-WPR (◦) 75.6 (+3.3) 83.4 (+3.1) 65.9 (+10.4) 67.9 (+15.7)
BCLM-WPR (?) 78.5 (+6.2) 85.8 (+5.5) 70.2 (+14.7) 70.4 (+18.2)
CQF (ML) [13] 65.6 75.7 34.3 46.7
BCQF (MAP) [21] 67.8 (+2.2) 76.4 (+0.7) 36.2 (+1.9) 47.1 (+0.4)
GMM3 [16] 60.8 (-4.8) 68.8 (-6.9) 37.0 (+2.7) 40.0 (-6.7)
DBASM-GR (◦) 68.4 (+2.8) 78.2 (+2.5) 39.4 (+5.1) 48.1 (+1.4)
BCLM-GR (?) 69.2 (+3.6) 79.5 (+3.8) 40.1 (+5.8) 48.6 (+1.9)
SCMS-KDE (ML) [17] 75.1 81.4 62.9 59.1
SCMS-KDE (MAP) [18] 76.2 (+1.1) 82.5 (+1.1) 65.7 (+2.8) 62.4 (+3.3)
DBASM-KDE (◦) 79.9 (+4.8) 85.6 (+4.2) 70.8 (+7.9) 66.4 (+7.3)
DBASM-KDE-Hierarchical (◦) 80.3 (+5.2) 84.3 (+2.9) 70.2 (+7.3) 65.5 (+6.4)
BCLM-KDE (?) 82.4 (+7.3) 88.6 (+7.2) 73.4 (+10.5) 69.9 (+10.8)
BCLM-KDE-Hierarchical (?) 82.1 (+7.0) 88.1 (+6.7) 72.4 (+9.5) 69.2 (+10.1)
BCLM-KDE Fusion (M = 2) (?) 85.4 (+10.3) 93.4 (+12.0) 80.9 (+18.0) 72.1 (+13.0)

(?)→ our method, (◦)→ our method w/o prior modeling (section 3.5.1)

Fig. 5: The bar charts display the (normalized) average location error of the most salient facial features in each dataset.
The fitting performance curves are shown below. The table holds quantitative values taken by setting a fixed error amount
(em = 0.1, i.e. the vertical line in the graphics). Each table entry show how many percentage of images converge with less
(or equal) RMS error than the reference. The results show that our proposed methods outperform all the other (using all
the local strategies WPR, GR and KDE).

training images collected at our institution, which was
done mainly due to incompatibility of the annotation
format. In all cases, the nonrigid parameters started
from zero, the similarity parameters were initialized
by a face detection [51] (whose location appears as
AVG in the evaluation charts, like before) and the
model was fitted until convergence up to a maximum
of 20 iterations.

Figure 5 shows a number of results: 1) Fitting per-
formance curves, using the normalized inter-ocular
error metric (Eq. 47), for the IMM, XM2VTS, BioID
and LFW datasets, respectively; 2) A table with quan-
titative values taken by sampling the fitting curves
using a fixed error metric amount (em = 0.1, shown
as a vertical line in the graphics) and finally 3) a set
of bar charts displaying the (inter-ocular) normalized
average errors on the six most salient facial features
(eyes and mouth corners) with the SCMS (MAP),
DBASM and BCLM methods.

The results show that the CQF performs better than
the GMM3, mainly because GMM is very prone to
local optimums due to its multimodal nature (it is
worth mentioning that given a good initial estimate
GMM offers a superior fitting quality). The main
drawback of CQF is the limited accuracy due to
the over-smoothness of the response map (see fig-
ure 2). The BCQF is slightly better than CQF due
to its improved parameter update (MAP update vs
first order forwards additive). The same can be said
between SCMS (ML) and SCMS (MAP). The MAP
update penalizes large deformations of the shape
model, being a proper regularization, whereas ML just
makes unconstrained updates. The SCMS methods
improve the results when compared to CQF due to
the high accuracy provided by the mean-shift. In some
cases, the ASM achieves a comparable performance to
the SCMS. The reason for this relies on the excellent
performance of the MOSSE detector. The proposed
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ASM  (10.5 / 6.4)
CQF  (10.6 / 3.9)
GMM3  (11.1 / 4.3)
SCMS (MAP)  (8.2 / 2.6)
DBASM−KDE  (7.0 / 2.1)
BCLM−KDE  (6.4 / 1.7)
BCLM−KDE Hierarch  (6.3 / 1.5)

RMS ASM[1] DBASM-WPR(◦) BCLM-WPR(?)

mean 10.47 7.78 7.18
std 6.42 2.19 2.09

RMS CQF[13] BCQF[21] GMM3[16] DBASM-GR(◦) BCLM-GR(?)

mean 10.64 9.91 11.15 9.17 9.06
std 3.92 2.76 4.33 2.10 2.07

RMS SCMS[17] SCMS(MAP)[18] DBASM-KDE(◦) DBASM-KDE-H(◦) BCLM-KDE(?) BCLM-KDE-H(?) BCLM-KDE Fusion(?)

mean 9.45 8.16 7.03 7.16 6.39 6.26 5.89
std 3.58 2.57 2.09 2.16 1.68 1.50 1.45

(?)→ our method, (◦)→ our method w/o prior modeling (section 3.5.1)

Fig. 6: Evaluation of the tracking performance of several fitting algorithms on the FGNET Talking Face [39] sequence. The
values on legend box are the mean and standard deviation RMS errors, respectively. According, the table in the bottom
shows a full comparative view of the same mean and standard deviation RMS errors but for all the evaluated algorithms.
The top images show some BCLM-KDE fitting examples in the tested sequence. Best viewed in color.

Bayesian global optimization (BCLM) outperforms
all previous methods. Explicitly modeling the prior
distribution and using the covariance of the latent
variables (that represent the confidence in the current
parameters estimate) offers a significative increase in
fitting performance. The effect of using an enhanced
prior distribution is shown when DBASM versions
are compared with BCLM. For instance, in the LFW
dataset, which is the most representative of real world
conditions, there is an improvement of 3.5% more
converged images (while using a KDE local strategy).
The results also show that the hierarchical annealing
version of BCLM-KDE (BCLM-KDE-Hierarchical) has
a comparable performance, but at the cost of more
iterations.

Additionally, the Bayesian fusion of M = 2 detec-
tors was also evaluated using the method that pre-
viously achieved the best performance (BCLM-KDE).
The results of this approach (BCLM-KDE Fusion)
show that including multiple sets of patch alignment
classifiers further increase the fitting accuracy. In fact,
this approach achieves the overall best results.

4.4 Tracking Performance

The tracking performance was evaluated in the
FGNET Talking Face video sequence. As usual in
this kind of experiments, each frame uses as initial
estimate the previously estimated shape and pose
parameters (the first frame starts with the mean shape,
b = 0, and the pose is initialized by a face detector
[51]). Figure 6 shows the Root Mean Squared (RMS)

error between the convergence of each algorithm and
the ground truth annotation across the 5000 frames of
the sequence. Once again, due to the incompatibility
of landmark annotation, the error was only measured
between the corresponded points. The same figure
also shows, in the bottom, a comprehensive table
with the RMS error mean and standard deviation on
the full sequence for all the evaluated algorithms.
The results show that the relative performance be-
tween all global optimization approaches is similar to
the performance observed in previous experiments,
where the BCLM technique confirms the best overall
performance with the lowest RMS mean and standard
deviation values.

Finally, the later figure 7 shows some qualitative
evaluation results performed in the challenging La-
beled Faces in the Wild (LFW) database [40] taken
using the BCLM-KDE technique. Additional videos
showing the performance of the proposed algorithms
can be seen through the following link (videos).

5 CONCLUSIONS

This paper presents a novel and efficient Constrained
Local Model (CLM) fitting solution to align facial
parts in unseen images. A novel Bayesian formulation,
aimed to solve the CLM global alignment problem
in a maximum a posteriori (MAP) sense, is proposed.
Two main technical insights are introduced. The first
consists of inferring the posterior distribution of the
global warp using a second order estimate of latent
variables, accounting for the covariance of the shape

http://www.isr.uc.pt/~pedromartins/Videos/BCLMR/
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Fig. 7: Face alignment examples in the Labeled Faces the Wild dataset [40] taken using the BCLM-KDE fitting algorithm.

and pose parameters (by means of a Linear Dynam-
ical System). The second main improvement relies
in modelling the dynamic transitions of the PDM
parameters, encoded by the prior distribution, using
recursive Bayesian estimation techniques.

An extensive and thorough performance evalua-
tion was conducted using several standard datasets
(IMM, XM2VTS, BioID, Labeled Faces in the Wild
and FGNET Talking Face sequence) where both local
landmark detectors and global optimization strategies
are compared. The performance evaluation, starts by
demonstrating that the MOSSE correlation filters offer
a superior landmark detection performance. After-
wards, the global optimization comparisons show that
the proposed Bayesian approaches outperform other
state-of-the-art CLM fitting solutions.
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