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We propose a new method to background modeling using the ten-
sor concept. The structure tensor was used to convert the image into a
more information rich form and is defined as T = Kρ ∗ (vvT ) where v =
[Ix, Iy, Ir, Ig, Ib], and Kρ is a smoothing kernel. The tensor space does not
form a vector space, thus linear statistical techniques do not apply. Tak-
ing into account the differential geometrical properties of the Rieman-
nian manifold where tensors lie [5], we propose a novel approach for
foreground detection on tensor field based on data modeling by means of
GMM directly on tensor domain. We introduced a K-means approxima-
tion of the EM algorithm based on an Affine-Invariant metric [5]. This
metric has excellent theoretical properties but essentially due to the space
curvature the computational burden is high. We propose a new K-means
based on a new family of metrics, called Log-Euclidean [1], in order to
speed up the process. Based on a novel vector space structure for tensors,
the Log-Euclidean transforms computations on tensors into Euclidean
computations on vectors in the logarithms domain. From a practical point
of view yield similar results, with an experimental computation time ratio
of at least 2 and sometime more in favor of the Log-Euclidean.

The tensor (S+
d = d× d symmetric positive-definite matrix) space is not

a vector space. Instead S+
d lies on a Riemannian manifold M [2]. Let

γ(t) : [0,1]→M be a curve, with γ(0) = X, γ(1) = Y, ∀X,Y∈M. The geodesic
between X and Y is defined as the minimum length curve connecting these
points. The tangent space TXM at X is the vector space which contains the
tangent vectors to all curves on M passing through X. Given a tangent
vector γ̇(0) ∈ TXM there exists a unique geodesic with γ(0) = X and initial
velocity γ̇(0). The exponential map expX : TXM→M maps the vector γ̇(0)
at point X to Y = γ(1). The logarithm map logX : M→ TXM maps any point
Y ∈M to the unique tangent vector γ̇(0) at X that is the initial velocity of
the geodesic from X to Y.

Euclidean metric: the distance De(X,Y) between points X,Y ∈ S+
d

and the gradient of the squared distance ∇XD2
e(X,Y) are given as follows[

De(X,Y) = |X−Y|F =
√

tr((X−Y)(X−Y)T)
] [

∇XD2
e(X,Y) = X−Y

]
(1)

Affine-Invariant metric [5] : the geodesic defined by the initial point
γ(0) = X and the tangent vector γ̇(0) is expressed as

γ(t) = expX [t γ̇(0)] = X
1
2 exp

[
(t)X−

1
2 γ̇(0)X−

1
2

]
X

1
2 (2)

which in case of t = 1 correspond to the exponential map expX : TXM→M
with γ(1) = expX(γ̇(0)). The logarithm map logX : M→ TXM is defined as

γ̇(0) = logX(Y) =−X log(Y−1X) (3)
The geodesic distance Da(X,Y) between points X,Y ∈ S+

d , induced by this
metric, derived from the Fisher information matrix [5] is given as[

Da(X,Y) =

√
1
2

tr(log2(X−
1
2 YX−

1
2 ))

] [
∇XD2

a(X,Y) = X log(Y−1X)
]

(4)

The distance gradient, ∇XD2
a(X,Y) is the negative of the velocity γ̇(0).

Log-Euclidean metric [1] : based on specific properties of the matrix
exponential/logarithm on tensors, it is possible to define a vector space
structure on tensors. Since under the matrix exponentiation, there is a
one-to-one mapping between the tensor space and the vector space of
symmetric matrices, one can transfer to tensors the standard algebraic op-
erations with the matrix exponential. The tensor vector space with this
metric is in fact isomorphic and isometric with the corresponding Eu-
clidean space of symmetric matrices. Results obtained on logarithms are
mapped back to the tensor domain with the exponential. The geodesic
defined by the point γ(0) = X and the tangent vector γ̇(0) is expressed as

γ(t) = expX[t γ̇(0)] = exp[log(X)+∂Xlog.[t γ̇(0)]] (5)
which in case of t = 1 correspond to the exponential map expX : TXM→M
with γ(1) = expX(γ̇(0)). The logarithm map logX : M→ TXM is defined as

γ̇(0) = logX(Y) = ∂log(X)exp.[log(Y)− log(X)] (6)
Since the Log-Euclidean metrics correspond to Euclidean metrics in

the logarithms domain, the interpolation between tensors is simplified as

γ(t) = exp[(1− t) log(X)+ t log(Y)] (7)
The geodesic distance Dl(X,Y) between points X,Y ∈ S+

d , induced by
this metric, is also extremely simplified as follows[

Dl(X,Y) =
√

tr[(log(Y)− log(X))2]
] [

∇XD2
l (X,Y) =−γ̇(0)

]
(8)

The gradient, ∇XD2
l (X,Y) is the negative of the velocity γ̇(0). The Log-

Euclidean Dl is much simpler than the Affine Da where matrix multi-
plications, square roots, inverses are used. However, the mappings are
complicated in the Log-Euclidean case by the use of the matrix differen-
tials. Using spectral properties of symmetric matrices, one can compute
an explicit/efficiently closed-form expression for these differentials [4].

Figure 1: Left to right 7→ Original , GMM(v) , KDE(v) , GMM(T)-
Euclidean , GMM(T)-AffineInvariant , GMM(T)-LogEuclidean

We model the background with a GMM on tensor space defined as

p(Ti|Θ) =
K

∑
k=1

ωk
exp
(
−(1/2)ϕ(βi,k)T Λ

−1
k ϕ(βi,k)

)√
(2π)n|Λk|

(9)

βi,k = −∇T̄k
D2(T̄k,Ti), ϕ : S+

d 7→ ℜn is a local coordinate chart, ωk=prior,
T̄k=mean, Λk=covariance. An EM algorithm as proposed in [3] for the
Affine case is a costly procedure. In order to speed up the process we
propose a online Kmeans, adapted from the version presented in [6].

Kmeans (Euclidean): the algorithm is similar to the [6]. The weights
are updated using ω t

k = (1−α)ω t−1
k +(α)(Mt

k), where Mt
k is 1 for the model

which matched and 0 for the remaining models. The distribution parame-
ters which matches the new observation (Ti) are updated as follows[

T̄t
k = (1−ρ)T̄t−1

k +ρTi
] [

Λ
t
k = (1−ρ)Λt−1

k +ρϕ(β t
i,k)

T
ϕ(β t

i,k)
]

(10)[
β

t
i,k =−∇T̄t

k
D2

e(T̄
t
k,Ti) = Ti− T̄t

k

] [
ρ = αN (Ti|T̄t−1

k ,Λt−1
k )

]
(11)

Kmeans (Affine-Invariant): the mean update equation (10) can only
be directly applied in the Euclidean case. We need to take into account
the Riemannian geometry of the manifold to apply the geodesic metrics.
We propose a method to update the mean, based on the concept of tensor
interpolation. In order to simplify we change the notation as follows[

Z = T̄t
k
] [

X = T̄t−1
k = γ(0)

]
[Y = Ti = γ(1)] (12)

Let γ(t) : [0,1] ⊂ ℜ→M be the geodesic defined by γ(0) = X and γ̇(0)
with γ(1) = Y. The point Z is the interpolation between X and Y at t = ρ

Z = γ(ρ) = X
1
2 exp

[
(ρ)X−

1
2
[
−X log(Y−1X)

]
X−

1
2

]
X

1
2 (13)

β
t
i,k =−∇T̄t

k
D2

a(T̄
t
k,Ti) =−∇ZD2

a(Z,Y) =−Z log(Y−1Z) (14)

Kmeans (Log-Euclidean): in this case, a closed-form expression for
interpolation between tensors is given by (7). The point Z between X and
Y that is reached by the geodesic γ(t) at time t = ρ is estimated as

Z = γ(ρ) = exp[(1−ρ) log(X)+ρ log(Y)] (15)
β

t
i,k =−∇T̄t

k
D2

l (T̄
t
k,Ti) =−∇ZD2

l (Z,Y) = ∂log(Z)exp.[log(Y)− log(Z)] (16)
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