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Motivation : Overview

* The mean shift (MS) on Euclidean spaces was extrinsically formulated to operate on general Riemannian manifolds (Ext-MS) .
The mode seeking is performed on the tangent spaces, where the underlying curvature is not fully considered.

* The state-of-the-art method propose a intrinsic mean shift (IntGS-MS) designed to operate on two particular Riemannian
manifolds, i.e. Grassmann and Stiefel manifolds (using manifold-dedicated density kernels).

Contribution :
* We propose a new paradigm to intrinsically reformulate the MS on general Riemannian (SInt-MS) manifolds by embedding
the Riemannian manifold into a Reproducing Kernel Hilbert Space using a general Riemannian kernel function, i.e. heat kernel.
* The key issue is that when the data is implicitly mapped from the manifold to the Hilbert space, the structure and curvature of
the manifold is taken into account (i.e. exploits the underlying information of the data).
* The inherent optimization is then performed on the embedded space.

Kernel Mean Shift Mercer Kernel on Riemannian Manifolds - Heat Kernel
* The manifold data is implicitly mapped to an enlarged feature 7{ * A Riemannian manifold can be embedded into a Hilbert space
space by the mapping function 7z = gb(Z) using the heat kernel (it was proved that the heat kernel can

define a Mercer Kernel while respect the Riemannian geometry).
* In the feature space the density estimator at the point Z € H . . . ) ]
* The Laplace operator on a Riemannian Manifold is defined as
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Experimental Evaluation
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