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Abstract

Background modelling on tensor field has recently been
proposed for foreground detection tasks. Taking into ac-
count the Riemannian structure of the tensor manifold, re-
cent research has focused on developing parametric meth-
ods on the tensor domain e.g. gaussians mixtures (GMM)
[7]. However, in some scenarios, simple parametric mod-
els do not accurately explain the physical processes. Kernel
density estimators (KDE) have been successful to model,
on Euclidean sample spaces the nonparametric nature of
complex, time varying, and non-static backgrounds [8].
Founded on the mathematically rigorous KDE paradigm
on general Riemannian manifolds [15], we define a KDE
specifically to operate on the tensor manifold. We present a
mathematically-sound framework for nonparametric mod-
eling on tensor field to foreground segmentation. We en-
dow the tensor manifold with two well-founded Riemannian
metrics, i.e. Affine-Invariant and Log-Euclidean. Theoret-
ical aspects are defined and the metrics are compared ex-
perimentally. Theoretic analysis and experimental results
demonstrate the promise/effectiveness of the framework.

1. Introduction
Foreground detection is a crucial aspect in the under-

standing and analysis of video sequences. It is often de-
scribed as the process that subdivides an image into regions
of interest-object and background. This task usually relies
on the extraction of suitable features that are highly dis-
criminative. Statistical modeling in color/intensity space is
a widely used approach for background modeling to fore-
ground detection. However, there are situations where sta-
tistical modelling directly on image values isn’t enough to
achieve a good discrimination (e.g. dynamic scenes, illumi-
nation variation). Thus the image may be converted into a
more information rich form, such as a tensor field, to yield
latent discriminating features (e.g. color, gradients, filters
responses). Texture is one of the most important features,
therefore its consideration can greatly improve image anal-
ysis. The structure tensor [3, 10] has been introduced for

such texture analysis as a fast local computation providing
a measure of the presence of edges and their orientation.

For the sake of brevity, the related work description will
be neither rigorous nor complete, but we want outline some
of the key ideas (refer to [5] for a survey). Over the years,
several background models have been proposed. These
models can be broadly divided into pixel-wise and block-
wise models. The pixel-wise models relie on the separation
of statistical model for each pixel and the model is learned
entirely from each pixel history. In the block-wise mod-
els, the pixel model depends not only on that pixel but also
on the nearby pixels. They consider spatial information an
essential element to understand the scene structure. Spa-
tial variation information, such as gradient feature, helps
improve the realiability of structure change detection. The
pixel model also depends on its neighbors, taking advan-
tage of the correlation existing between neighbouring pix-
els. Stauffer [21] proposed a parametrically approach in
which each color pixel is represented as a GMM. The pa-
rameters are updated using an online Kmeans. However, in
some scenarios, parametric models don’t accurately explain
the physical processes, i.e. can’t model the nonparametric
nature of complex, time varying, non-static backgrounds.
One needs to employ nonparametric estimation techniques
that don’t make any assumptions about the pdf, except the
mild assumption that pdf are smooth functions, and can rep-
resent arbitrary pdfs given sufficient data. Elgammal [8]
proposed the KDE for modeling the pixel density, from its
past samples. Foreground detection is performed by thresh-
olding the probability of the observed sample.

The tensor space doesn’t form a vector space, thus lin-
ear statistical techniques don’t apply. Although the classical
Euclidean operations are well adapted to general square ma-
trices (d × d), they are practically/theoretically unsatisfac-
tory for tensors, which are very specific matrices, i.e. sym-
metric positive-definite (S+

d is a Riemannian manifold : dif-
ferentiable manifold equipped with a Riemannian metric).
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These problems have led to the use of Riemannian metrics.
To circumvent these difficulties an Affine-Invariant metric
[20, 11] has been proposed as a rigorous tensor framework.
This metric has excellent theoretical properties and provide
powerful processing tools, but essentially due to the cur-
vature induced on the tensor space the computational bur-
den can be high. To overcome this limitation, based on a
novel vector space structure for tensors a new metric called
Log-Euclidean was presented in [1]. A space with a null
curvature is obtained, while the theoretical properties are
preserved. In the Log-Euclidean framework, Riemannian
computations become classical Euclidean computations in
the matrix logarithms domain. This leads to simple exten-
sions of the classical tools of vector statistics to tensors.

Background modelling on tensor field has become an
important technique for foreground detection. In order to
exploit all the tensor information and taking into account
the Riemannian structure of the tensor manifold, previous
work has focused on developing parametric methods. Ca-
seiro et al. [6] proposed a foreground detection method for
tensor-valued images based on the definition of GMM on
the tensor domain. They proposed a online Kmeans to es-
timate the parameters based on the Affine-Invariant met-
ric. In order to speed up the process, Caseiro et al. [7]
presented a novel Kmeans algorithm based on the Log-
Euclidean metric. They presented the theoretical aspects
and the Affine-Invariant and Log-Euclidean frameworks are
compared. From a practical point of view, results are sim-
ilar, but the Log-Euclidean is much faster. However, as ar-
gued previously, sometimes the pixel data is more complex
and can’t be modeled parametrically. As shown by Elgam-
mal [8] the KDE have been successful to model, on Eu-
clidean sample spaces, the nonparametric nature of complex
physical processes. Seeing that recently, in the mathemat-
ics community, was propose/defined the KDE on general
Riemannian manifolds [15], it would be interesting to non-
parametrically reformulate the existing tensor-based GMM
algorithms [7, 6]. The idea is to leave the data to show the
structure lying beyond them, instead of imposing one.

The main paper contributions are twofold: 1- Founded
on the mathematically rigorous KDE on general Rieman-
nian manifolds proposed in [15], we define a KDE specifi-
cally to operate on the tensor manifold. To accomplish this,
the tensor manifold is endowed with two Riemannian met-
rics (Affine-Invariant,Log-Euclidean) and with a Euclidean
metric to prove the benefits of take into account the Rie-
mannian structure. 2- We present a mathematically-sound
framework for nonparametric modeling on tensor field to
foreground detection. We generalized herein the nonpara-
metric background model proposed in [8], one of the most
widely used per-pixel models, from pixel domain to tensor
domain. Our goal is to nonparametrically reformulate the
tensor-based GMM proposed in [7] in a similar way to what

Elgammal [8] did in relation to Stauffer’s work [21]. Theo-
retical aspects are defined and the metrics are compared.

2. Riemannian Manifolds
A manifold is a topological space locally similar to an

Euclidean space [14, 23, 4]. LetM be a n-manifold. For
each point P ∈M there is a coordinate chart (U , ϕ) where
U is a subset of M containing P and ϕ : U → Ũ is a
homeomorphism from U to a subset Ũ = ϕ(U) ⊂ <n.
Given a chart (U , ϕ) the set U is called a coordinate do-
main. The map ϕ is denominated as local coordinate map,
and the component functions of ϕ are called local coordi-
nates on U , i.e. the chart defines a local coordinate system
x = (x1, ..., xn)T . A Riemannian manifold is a differen-
tiable manifold M endowed with a Riemannian metric g.
The tangent space TPM, defined ∀P ∈ M, is simply a
vector space, attached to P, which contains the tangent vec-
tors to all curves on M passing through P, i.e., the set of
all tangent vectors at P. A Riemannian metric is defined by
a continuos collection of inner products < ., . >P on the
tangent space TPM for each P ∈ M. We denote this in-
ner product by g and for two tangent vectors u, v ∈ TPM,
the inner product is written as gP(u, v). The inner prod-
uct induces a norm for u given by ||u|| =

√
gP(u, u).

Given a chart (U , ϕ) at P with a local coordinate sys-
tem x = (x1, ..., xn), it is possible to determine a ba-
sis ∂/∂x = (∂1, ..., ∂n) of the tangent space TPM (∂i =
shorter notation for ∂/∂xi). Any element of the TPM can
be expressed in the form

∑n
i=1 x

i∂i. We can express the
metric in this basis by a (n × n) symmetric, bilinear and
positive-definite form GP(x) = [gij(x)]P given by the in-
ner products gij(x) =< ∂i, ∂j >P. The form GP(x) is
called the local representation of the Riemannian metric.

The geodesic is the locally length-minimizing smooth
curve γ(t) : I = [0, 1] →M, characterized by the fact that
it is autoparallel, e.g. the field of tangent vectors γ̇(t) stays
parallel along γ (velocity is constant along the geodesic). In
local coordinates, a curve is a geodesic iff it is the solution
of the n second order Euler-Lagrange equations:

d2xk

dt2
+

n∑
i,j=1

Γkij
dxi

dt

dxj

dt
= 0 ∀k = 1, ..., n (1)

where Γkij are the Christoffel symbols of the second kind.
For each tangent vector u ∈ TPM, there is a unique
geodesic γ(t) starting at P with initial velocity γ̇(0) = u.
The exponential map, expP : TPM→M maps γ̇(0) = u
to the point reached by the geodesic, γ(1) = expP(γ̇(0)).
The origin of the TPM is mapped to the point itself,
expP(0) = P. For each P ∈ M, there exists a neighbor-
hood Ũ of the origin in TPM, such that expP is a diffeo-
morphism from Ũ onto a neighborhood U of P. In general,
the exponential map is onto but only one-to-one in a neigh-



borhood of P. Over this neighborhood U , we can define the
inverse of the exponential map i.e. the mapping from U to Ũ
is the logarithm map logP = exp−1

P : U → Ũ . It maps any
point Q ∈ U to the unique tangent vector u ∈ TPM that is
the initial velocity γ̇(0) of the geodesic between γ(0) = P
and γ(1) = Q. The neighborhood Ũ is not necessarily con-
vex. However, Ũ is star-shaped, i.e. for any point ∈ Ũ , the
line joining the point to the origin is contained in Ũ . The
image of a star-shaped neighborhood under the exponen-
tial map is a neighborhood of P on the manifold (normal
neighborhood). The exponential map can be used to define
suitable coordinates for normal neighborhoods. Let Ũ be a
star-shaped neighborhood at the origin in TPM and let U
be its image under the exponential map, i.e., U is a normal
neighborhood of P. Let ei, ∀i = 1, ..., n be a orthonor-
mal coordinate system for TPM. Therefore g(ei, ej) = 0
if i 6= j and g(ei, ej) = 1 if i = j. The normal coordi-
nate system of P is the coordinate chart (U , ϕ) which maps
Q ∈ U to the coordinates of logP(Q) in the orthonormal
coordinate system ⇒ logP(Q) =

∑n
i=1 ϕ

i(Q)ei, where
ϕi(Q) is the ith coordinate of ϕ(Q) ∈ <n.

Connection : The curvature concept play an important
role in the expression of the KDE on manifolds. Before
introducing the curvature notion, we need to precise the
notion of connection ∇. It is crucial in geometry since it
allows to transport quantities along curves in a consistent
manner and, ultimately, to compare local geometries de-
fined at different manifold locations [13]. The connection
makes it possible to map any tangent space TPM onto an-
other tangent space TQM. The need of such a mapping
arises : imagine that we want to transport a vector, in a
parallel manner, from its original point P to Q. In gen-
eral, the parallel transport procedure is dependent on the
choice of coordinate system, which is not desirable. This
dependence directly comes from the fact that the classical
directional derivative does not behave well under changes of
the coordinate system. It is possible to solve this problem,
i.e. to make the differentiation intrinsic, by considering the
covariant derivative. The covariant derivative is a way of
specifying a derivative along tangent vectors of a manifold,
i.e. orthogonal projection of the usual derivative of the vec-
tor fields onto tangent space. The canonical affine connec-
tion on a Riemannian manifold is the Levi-Civita connec-
tion [12] and is directly defined from the covariant deriva-
tive. It parallel transports a tangent vector along a curve
while preserving its inner product (it is compatible with the
metric, i.e. the covariant derivative of the metric is zero).
The Levi-Civita coefficients are defined, in each local chart
by the Christoffel symbols of the second kind Γkij as follows

∇kij = Γkij = gklΓijl =
1
2
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
(2)

∀i, j, k, l = 1, ..., n, is used the Einstein’s summation con-

vention, gkl is the metric inverse .
Riemannian Curvature Tensor (R) : The notion of cur-

vature for Riemannian manifolds of dimension > 3 can’t be
fully described by a scalar quantity. Riemann introduced
the Riemannian tensor (R), in terms of the Levi-Civita con-
nection. It can be expressed in terms of the metric tensor
and its first/second derivatives. The Riemann tensor mea-
sures the covariant derivatives non-commutativity. In local
coordinates, is expressed through the Christoffel symbols as

Rlijk = ∂jΓlki − ∂kΓlji + ΓljmΓmki − ΓlkmΓmji (3)

Ricci Curvature Tensor (R) : The Ricci is defined as
the contraction of the Riemann curvature tensor (R) and can
be thought of as the Laplacian of the Riemannian metric e.g.
is a way to measure how much n-dimensional volumes in
regions of an n-dimensional manifold differ from the vol-
umes of equivalent regions in <n. For Riemannian mani-
folds up to dimension 3 the Ricci completely describe its
curvature. For manifolds of dimension > 4 it become insuf-
ficient. However, it plays an crucial role to define the KDE
on the tensor space. The Ricci tensor is given as follows

Rij = Rkijk = Rijklgkl (4)

3. Background Modeling - Intrinsic
In this section we define a nonparametric estimator

specifically to operate on the tensor manifold. The mani-
fold is endowed with two Riemannian metrics and with the
Euclidean metric to prove the benefits of take into account
the Riemannian structure. The literature presents several
methods to nonparametric modelling, e.g. Fourier expan-
sions, splines, kernels [22]. We intend to use the kernel-
based estimator known as Parzen-window estimator that
essentially performs scattered-data interpolation by super-
posing kernel functions placed at each datum. It is the
most widely-used practical method for nonparametrically
estimate the underlying density of a random sample. By
placing a smooth kernel, the resulting estimator will have
a smooth density estimate. Sample spaces with a more
complex intrinsic structure than the Euclidean space (e.g.
Riemannian manifold structure) arise in a variety of con-
texts and motivate the adaptation of popular nonparametric
estimation techniques on <n. However, applying a non-
parametric approach outside Euclidean spaces isn’t trivial
and requires careful use of differential geometry. Frequen-
tist methods for nonparametric estimation on non-Euclidean
spaces have been developed by Pelletier [15]. In [15], an ap-
propriate kernel method is presented on general Riemannian
manifolds, which generalizes the commonly used location-
scale kernel on Euclidean spaces. The Pelletier’s idea was
to build an analogue of a kernel onM by using a positive
function of the geodesic distance onM, which is then nor-
malized by the volume density function to consider the cur-
vature. The Pelletier’s estimator is consistent with standard



kernel estimators on<n. It also relies on the intuitive notion
of a kernel function that has the highest value at the obser-
vation and monotonically-decreasing values with increasing
distance from the observation. It converges at the same rate
as the Euclidean kernel estimator. Provided the bandwidth
is small enough, the kernel is centered on the observation,
i.e. the observation is an intrinsic mean of its associated
kernel. Consider a probability distribution with a density f
on a Riemannian manifold (M, g). Let {Z1, ...,ZN} be N
i.i.d. random objects onM with density f . The density es-
timator of f is defined as the map fN,K : M→ <+ which,
to each Z ∈M , associates the value fN,K(Z) given by

fN,K(Z) =
1
N

N∑
i=1

1
θZi(Z)

1
hn
K

(
D(Z,Zi)

h

)
(5)

where D(Z,Zi) is the geodesic distance between points
Z,Zi ∈ M, θZi(Z) is the volume density function, (n) is
the manifold dimension, (h) is the bandwidth or smoothing
parameter, (N) is the number of samples and K(.) is a non-
negative function (we define K(.) as the Normal pdf ).

In order to make sure that the density function onM in-
tegrates to one, we need to set up a framework that allows
us to perform the integration. In a Euclidean space the inte-
gral of the kernel is independent of the point at which it is
centered. For a Riemannian manifold, the integral depends
on the point at which the kernel it is centered, e.g. depends
on the local geometry ofM in a neighborhood of the obser-
vation. This is necessary for obtaining an estimator which
is consistent with kernel estimators on Euclidean space, and
which possesses the same properties under a similar bunch
of assumptions. It is possible to ensure the integral is the
same irrespective of where it is centered by using the vol-
ume density function. This entails computing the ratio of
the volume measures on the Riemannian manifoldM and
its tangent space TPM at each point. For P,Q ∈ M, the
volume density function θP(Q) onM is given ([2], p.174)

θP : Q→ θP(Q) =
µexp∗P g

µgP

(
exp−1

P Q
)

(6)

which is the quotient of the canonical measure of the Rie-
mannian metric exp∗P g on TPM (pullback of the metric-
tensor g by the exponential-map expP) by the Lebesgue
measure of the Euclidean structure gP on TPM. In other
words, if Q belongs to a normal neighborhood of P, then
θP(Q) is the density of the pullback of the volume mea-
sure onM to TPM with respect to the Lebesgue measure
on TPM via the inverse exponential-map exp−1

P . It gives
an indication of the curvature of the Riemannian space.
This is the same as the square-root of the determinant of
the metric-tensor expressed in the geodesic normal coordi-
nates at P and evaluated at exp−1

P Q. Let GP = [ gij ]P,
if y = ϕ(Q) = (y1, ..., yn)T denotes the normal coor-
dinates of Q in the normal coordinate system at P then

θP(Q) = (
√
|GP(y)|). In a normal neighborhood, θ is

strictly positive and θP(Q) = θQ(P) [23][15].

3.1. Intrinsic : Euclidean Metric (E)

The distance De induced by the Euclidean metric is given
by the Frobenius norm of the difference ∀P,Q ∈ S+

d as [7]

De(P,Q) =
√

tr((P−Q)(P−Q)T) (7)

The Pelletier’s estimator is consistent with KDE on Eu-
clidean spaces, i.e. when M is the Euclidean space <n,
the estimator expression reduces to the one of a standard
kernel estimator on <n [15]. Consider that (M, g) corre-
spond to the Euclidean space (<n, δ) where δ denotes the
usual canonical Euclidean metric, and consider the canoni-
cal identification of the tangent space TPM at some point
P of (<n, δ), with <n. Note that any two tangent spaces at
different points are also canonically identified. This defines
trivialy a normal chart, the domain of which is the entire
manifold. In this chart, the components of the metric tensor
form the identity matrix, hence ∀P,Q ∈ M the calculus
of the θP(Q) is (

√
|GP(y)|) = 1 (if the space is flat the

volume density function is unity everywhere [2], p.154).

3.2. Intrinsic : Affine-Invariant Metric (AI)

Seeing that the manifold of the multivariate normal dis-
tributions with zero mean can be identified with the tensor
manifold S+

d , a Riemannian metric on S+
d can be deduced

in terms of the Fisher information matrix [19]. An Affine-
Invariant Riemannian metric [20, 11] for the tensor space
S+
d , derived from the Fisher matrix, is given ∀P ∈ S+

d by

gij = g(Ei, Ej) = 〈Ei, Ej〉P =
1
2

tr(P−1EiP−1Ej) (8)

∀i, j = (1, ..., n) ; {∂i}i=1,...,n = {Ei}i=1,...,n denote
the canonical basis of the tangent space of S+

d ; The for-
mulae of the exponential/logarithm maps, for S+

d endowed
with this metric can be found in [7]. The geodesic distance
Da induced by the Affine-Invariant metric, derived from the
Fisher information matrix, ∀P,Q ∈ S+

d [7] is given by

Da(P,Q) =

√
1
2

tr(log2(P− 1
2 QP− 1

2 )) (9)

Square-Root Determinant Metric (
√
|GP(y)|) : Gener-

alizing the pdf concept requires a measure dM on the man-
ifold which, in case of Riemannian manifolds, is induced
in a natural way by the metric G(x) for a given local co-
ordinate system [16]. As any metric in a Euclidean space,
the Riemannian metric induces an infinitesimal volume el-
ement dM(x) =

√
|G(x)|dx in any chart (volume of the

parallelepiped spanned by the vectors of an orthonormal ba-
sis of the tangent space). The difference is that the measure



is now different at each point since the local expression of
the metric is changing. The reference measure dM(x) on
the manifold can be used to measure random events on the
manifold (generalization of random variables), and to define
their pdf (if it exists), i.e. the function p(x) on the man-
ifold such that the respective probability measure is given
by dP (x) = p(x)dM(x). The induced measure dM ac-
tually represents the notion of uniformity according to the
chosen Riemannian metric. With the probability measure
dP of a random element, we can integrate functions φ(x)
from the manifold to any vector space, thus defining the ex-
pected value of this function. This notion of expectation
corresponds to the one we defined on real random variables
and vectors. Seeing that the Taylor expansion of the metric
is defined in [23], Pennec [16] deduced a Taylor expansion
of the measure dM in a normal coordinate system around
the mean value, in order to generalized a Normal law to
Riemannian manifolds. In our case we consider the normal
coordinate system around P ∈ M. The Taylor expansion
of the measure dM around the origin is given as [16]

dMP(y) =
(√
|GP(y)|

)
dy ≈

(
1− yT R y

6

)
dy (10)

where y is the normal coordinates of Q ∈ M and R is the
Ricci tensor in the considered normal coordinate system. To
define the Ricci tensor for S+

d , we have to choose an affine
connection, since this will influence the curvature proper-
ties. The existence/uniqueness of the Riemannian barycen-
ter, requires that the space exhibit a non-positive sectional
curvature. The canonical affine connection on a Rieman-
nian manifold is known as the Levi-Civita connection (or
covariant derivative). It is the only one to be compatible
with the metric (covariant derivative of the metric is zero),
i.e., the only one by which the parallel transport of a vec-
tor does not affect its length. Therefore, we will work with
the Levi-Civita connection in the remaining developments.
Using the local coordinates, the Christoffel symbols of the
second kind [20] for the space S+

d can also be expressed
in terms of the elements of the canonical {Ei}i=1,...,n and
dual basis {E∗

i }i=1,...,n (of the cotangent space of S+
d )

Γkij = Γ(Ei, Ej ;E∗
k) = E∗

k .(∇FEiEj) (11)

∀i, j, k = 1, ..., n. Provided that [20] (P ∈ S+
d ) :

∂g(Ei, Ej)
∂xk

= −1
2

tr
(
P−1EkP−1EiP−1Ej

)
−1

2
tr
(
P−1EiP−1EkP−1Ej

) (12)

the unique affine connection (Levi-Civita) associated with
the Fisher information metric was derived from Eq. 2 as

Γ(Ei, Ej ;E∗
k) = −1

2
tr
(
EiP−1EjE

∗
k

)
−1

2
tr
(
EjP−1EiE

∗
k

)
(13)

Riemannian Curvature Tensor (R) : The Riemann tensor
for S+

d , derived from the Fisher information metric, and the
classical Levi-Civita affine connection is given by [20]

Rijkl = R(Ei, Ej , Ek, El)

=
1
4

tr
(
EjP−1EiP−1EkP−1ElP−1

)
−1

4
tr
(
EiP−1EjP−1EkP−1ElP−1

) (14)

Ricci Curvature Tensor (R) : The Ricci is computed on
the basis of closed-form expressions for the metric and R
(Eq. 4) and simply involves traces of matrix products. Sym-
bolic computations easily lead to the components of the
Ricci in terms of the components of P−1. Comparing the
Ricci with the metric, we confirm that the S+

d endowed
with this metric isn’t an Einstein manifold [14] i.e. it’s
a space of non-constant non-positive curvature, for which
there doesn’t exist a constant L such that Rij = Lgij . We
need take into account R to deal with the curvature.

3.3. Intrinsic : Log-Euclidean Metric (LE)

The geodesic distance Dl induced by the Log-Euclidean
metric, ∀P,Q ∈ S+

d is extremely simplified as follows [1]

Dl(P,Q) =
√

tr
(

(log(Q)− log(P))2
)

(15)

By trying to put a Lie group structure on S+
d , Arsigny [1]

observed that the matrix exponential is a diffeomorphism
from the Euclidean space of symmetric matrices Sd to the
tensor space S+

d . The important point here is that the loga-
rithm of a tensor P ∈ S+

d is unique, well defined and is a
symmetric matrix u = log(P). The matrix exponential of
any symmetric matrix u yields a tensor P = exp(u). Thus,
one can seamlessly to transport all the operations defined in
the vector space of Sd to the S+

d . Since there is a one-to-one
mapping between S+

d and Sd, one can transfer to tensors the
standard algebraic operations (addition + and scalar multi-
plication .) with the matrix exponential. This defines on S+

d

the logarithmic multiplication� and the logarithmic scalar
multiplication ~ operators, which provides S+

d with a com-
mutative Lie group structure and with a Vector space struc-
ture [1]. The � gives a commutative Lie group structure to
S+
d , for which any metric at the tangent space at the iden-

tity is extended into a bi-invariant Riemannian metric on
S+
d (invariant by multiplication and inversion) e.g. the Eu-

clidean metric on Sd is transformed into a bi-invariant Rie-
mannian metric on S+

d . Among Riemannian metrics in Lie
groups, the most suitable in practice, when they exist, are bi-
invariant metrics. They are used to generalize to Lie groups
a notion of mean consistent with multiplication and inver-
sion. For our tensor Lie group, bi-invariant metrics exist and
are simple. Their existence results from the commutativ-
ity of logarithmic multiplication between tensors, and since



correspond to Euclidean metrics in the logarithms domain
are called Log-Euclidean metrics. With ~, we get a com-
plete structure of vector space on tensors, meaning that most
of the operations that were generalized using minimizations
for the Affine-Invariant do have a closed-form with a Log-
Euclidean. The Riemannian framework is extremely sim-
plified. Results obtained on logarithms are mapped back to
the tensor domain with the exponential [1].

The Lie group of S+
d is isomorphic (algebraic structure

of vector space is conserved) and diffeomorphic to the addi-
tive group of Sd. The Lie group of S+

d endowed with a Log-
Euclidean metric, is isometric (distances are conserved) to
Sd endowed with the associated Euclidean metric. The
Log-Euclidean metric induces on S+

d a space with a null
curvature, i.e. endowed with the Log-Euclidean, the S+

d is
a flat Riemannian space (sectional curvature ([9], p.107) is
null everywhere). As proved in ([2], p.154), when the Rie-
mannian space is flat the volume density function is unity
everywhere. Taking into account these facts, and consider-
ing that the isometry implies that the determinant of the met-
ric tensor is unity everywhere [4], the calculus ∀P,Q ∈ S+

d

of θP(Q) is extremely simplified to (
√
|GP(y)|) = 1.

4. Background Modeling - Extrinsic
The KDE was intrinsically formulated to operate on S+

d .
Depending on the metric choosed the estimation using this
formulation can be hard to carry out. It would be interesting
to extrinsically reformulate the KDE and evaluate its effi-
ciency. We propose an extrinsic KDE designed to operate
on S+

d with two Riemannian metrics. The extension is ex-
trinsic in the sense that the inherent estimation is performed
on the tangent spaces. By first mapping the data to a tangent
space, that is a vector space, we can use a Euclidean KDE
[8]. We start by defining mappings from neighborhoods
on the manifold to a euclidean space, similar to coordinate
charts. Our maps are the logarithm maps logP that map the
neighborhood of points P ∈M to the tangent space TPM.
Since this mapping is a homeomorphism around the neigh-
borhood of a point, the manifold structure is locally pre-
served. This requires choosing a suitable tangent space on
which to map. In this work, the data was mapped onto the
tangent space at the mean point. Since the Karcher mean
µ ∈ M is the minimizer of the sum of squared Rieman-
nian distances [17], and the mapping preserves the struc-
ture of the manifold locally, this tangent space is a good
choice. This procedure can be seen as a way of lineariz-
ing the manifold around µ since the TµM provides a first
order approximation of the manifold around µ. This is the
same to consider a normal coordinate system (U , ϕ) around
µ. At time t, let {Zi}i=1,...,N be the set of N points on
M (past samples/observations) and Z0 ∈ M is the ac-
tual sample that we want to classify. First, we compute
the mean µt ∈ M of all samples {Zi}i=0,...,N . Then, we

map (project) all points {Zi}i=0,...,N to the tangent space
TµtM, using the logarithm map logµt(Zi), i = 0, ..., N .
Let zi = ϕ(Zi) = (z1

i , ..., z
n
i )T denote the normal coordi-

nates of Zi, ∀i = 0, ..., N in the normal coordinate system
at µt. Seeing that the normal system defines a vector space,
we can apply the Euclidean KDE on <n [8].

4.1. Extrinsic : Affine-Invariant Metric (AI)

Using the AI metric a closed-form expression for the
mean on S+

d cannot be obtained. But a gradient descent
algorithm was presented in [11]. The mean is only implic-
itly defined since the Riemannian barycenter exists and is
unique for nonpositive sectional curvature manifolds [20].
The algorithm alternates the barycenter computation in the
exponential chart centered at the current estimation of the
mean value, and a re-centering step of the chart at the point
of the manifold that corresponds to the computed barycen-
ter. An exact implementation of this iterative algorithm can
be a costly procedure. In order to speed up the process, we
will use a method based on a online Kmeans on S+

d (en-
dowed with the Affine-Invariant metric) proposed by Ca-
seiro et al. [6]. At each frame, the mean value µt ∈ S+

d is
updated using a learning rate (ρ). The new mean µt com-
bine the prior information µt−1 ∈ S+

d with the actual sam-
ple Z0 ∈ S+

d . To take into account the manifold geometry,
Caseiro et al. [6] derived an approximation equation to up-
date the tensor mean, based on the concept of interpolation.
The interpolation can be seen as a walk along the geodesic
joining the tensors. After some mathematical simplifica-
tions [6] the mean update equation turns into

µt = (µt−1)
1−ρ
2 (Z0)ρ (µt−1)

1−ρ
2 (16)

4.2. Extrinsic : Log-Euclidean Metric (LE)

A special case using the Affine-Invariant metric is given
by mapping to the identity. The identity matrix ∈ S+

d and
so mapping to its tangent plane instead of the mean ten-
sor is valid. This is equivalent to using the Log-Euclidean
metric. The Log-Euclidean framework defines a mapping
where the tensor space S+

d is isomorphic, diffeomorphic,
and isometric to the associated Euclidean space of sym-
metric matrices Sd. This mapping is precisely the simple
matrix logarithm (logI P = log P), ∀P ∈ S+

d i.e. tensors
are transformed into symmetric matrices using log P. Since
the Log-Euclidean transforms Riemannian computations on
tensors into Euclidean computations on vectors in the log-
arithms domain, practically one simply uses the usual tools
of Euclidean statistics on the logarithms and maps the re-
sults back to the tensor vector space with the exponential.
Notice, that in practice this extrinsic KDE algorithm in
which the mapping is defined by the matrix logarithm log
is mathematically equivalent to the intrinsic KDE using the
Log-Euclidean metric presented in the Section 3.3.



Figure 1. Examples of segmentation results on the sequences 1 to 4 (Top 7→ Bottom) using the methods : GroundTruth ; GMM[I,Ix,Iy]
; KDE[I,Ix,Iy] ; KDE-Int[Tensor]-E ; GMM[Tensor]-AI ; KDE-Int[Tensor]-AI ; KDE-Int[Tensor]-LE (Left 7→ Right)

5. Results
In order to analyze/confirm the effectiveness of the pro-

posed framework, we conduct experiments on six chal-
lenging video sequences (including the two sequences
used in [7]) presented in previous literature, including
indoor/outdoor environments with some complex back-
grounds (e.g. illumination changes, small camera motions).
The sequence 1 (HighWayI) is a highway scenario where
the vast majority of car colors are shades of gray (similar
to the background). The sequence 2 (Railway) is the mov-
ing camera sequence used by Caseiro et al. in [7], which
involved a camera mounted on a tall tripod. The wind
caused the tripod to sway back and forth causing motion
of the camera. The sequence 3 (HighWayIII) is a high-
way scenario where there is typically a steady stream of ve-
hicles. The sequence 4 (HalwayI) shows a busy hallway
where people are walking or standing still. The sequence
5 (Campus) is a noisy sequence from outdoor campus site
where cars approach to an entrance barrier and students are
walking around. The sequence 6 (HighWayII) is a high-
way scenario where the camera presents some motion and
the image is noisy. The sequences 1,5,6 are from the ATON
project (http://cvrr.ucsd.edu/aton/shadow) or VISOR repos-
itory (http://www.openvisor.org/) [18]. The sequence 2 is
from Yaser Seikh work (http://www.cs.cmu.edu/∼yaser/).
The sequences 3,4 are from Nicolas Brisson work
(http://cvrr.ucsd.edu/aton/shadow/). Two widely-used vec-
tor space methods to foreground detection, namely the
Stauffer’s [21] (GMM) and the Elgammal’s [8] (KDE) tech-
niques are employed to compare with the proposed ten-
sor framework (using two types of features sets, i.e. color
[r, g, b] and gray level incremented with gradients [I, Ix,
Iy]). Our framework (KDE[Tensor]) is also compared with
the recently proposed parametric technique to background
modeling on tensor field [7] (GMM[Tensor]). Both the

GMM and KDE tensor frameworks are tested using two
Riemannian metrics, i.e. Affine-Invariant (AI) and Log-
Euclidean (LE) and with the standard Euclidean metric (E)
to comprove the benefits of take into account the Rieman-
nian structure of the manifold. We also compared the intris-
inc KDE tensor (KDE-Int[Tensor]) formulation (section 3)
with the extrinsic (KDE-Ext[Tensor]) counterpart (section
4). The performance comparison of the methods is based
primarily on a quantitative evaluation in terms of true pos-
itive ratio (TPR) and false positive ratio (FPR). The com-
parative results of these experiments are presented in Ta-
ble 1. Examples of segmentation results on four sequences
are shown in Figure 1. Note that the results presented here
are raw data without any postprocessing. In our work we
used a structure tensor in which are encoded the gray infor-
mation [I] and texture [Ix, Iy] features (gradients). This
result in a structure tensor defined as T = (vvT ) with
v = [I, Ix, Iy] and T ∈ S+

3 (d=3 and n=6). The structure
tensor is calculated for each image pixel using a patch with
dimension 3 × 3. All the tensor-based experiments pre-
sented (KDE[Tensor], GMM[Tensor]) use the same struc-
ture tensor. Remark that the advantage of the nonparametric
paradigm over the parametric counterpart remains indepen-
dent of the information included in the structure tensor, i.e.
the proof of concept does not change. Due to space lim-
itations, we do not discuss implementation technicalities.
We recall that the paper ideia is to generalize the nonpara-
metric background model proposed by Elgammal et al. [8],
from pixel domain to tensor domain. Therefore, using the
KDE derivations for the tensor manifold, the algorithm to
foreground detection is basically similar to [8]. The Log-
Euclidean metric considerably simplifies the scheme, from
a practical point of view, while maintaining the mathemat-
ical soundness. Notice that the (KDE[Tensor] + LogEu-
clidean) is faster than all the (GMM[Tensor]) versions.



1-HighWayI 2-Railway 3-HighWayIII 4-HalwayI 5-Campus 6-HighWayII
Methods TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

GMM [r, g, b] 52.10 20.25 55.23 23.10 55.40 24.95 50.10 25.30 48.50 34.48 50.63 37.14
GMM [I, Ix, Iy] 58.05 17.58 60.45 20.80 61.05 22.35 55.05 21.90 54.30 31.05 55.12 34.03
KDE [r, g, b] 59.83 16.85 62.70 19.95 63.15 22.00 57.45 21.40 55.60 30.13 58.25 32.58
KDE [I, Ix, Iy] 65.95 15.10 68.55 16.90 69.03 20.85 64.73 18.85 60.10 27.65 63.90 28.10
GMM [Tensor] - E 68.02 14.00 72.90 14.20 70.24 17.05 67.95 15.18 64.21 24.59 65.04 25.04
GMM [Tensor] - AI 83.90 07.95 83.25 07.38 81.70 09.35 82.27 10.25 74.94 14.01 73.81 15.20
GMM [Tensor] - LE 83.00 08.21 82.10 07.92 80.96 09.94 82.93 10.96 72.82 14.93 73.02 15.86
KDE-Int [Tensor] - E 74.10 10.36 76.30 10.65 74.35 10.46 73.05 11.03 69.04 15.08 70.13 18.83
KDE-Int [Tensor] - AI 96.25 01.02 94.35 01.74 95.65 00.95 95.78 01.12 87.90 05.52 87.25 07.95
KDE-Int [Tensor] - LE 95.64 01.17 94.23 01.96 94.75 01.08 95.53 01.95 87.14 05.71 86.97 07.13
KDE-Ext [Tensor] - AI 90.05 04.10 89.45 04.51 89.95 05.01 90.03 05.93 81.42 10.76 79.53 12.07
KDE-Ext [Tensor] - LE 95.64 01.17 94.23 01.96 94.75 01.08 95.53 01.95 87.14 05.71 86.97 07.13

Table 1. Quantitative performance evaluation on the six sequences, in terms of : True positive ratio (TPR) and False positive ratio (FPR)

6. Conclusion
Taking into account the Riemannian structure of the

tensor manifold, we derived a nonparametric Riemannian
framework for foreground detection on tensor field. We pre-
sented the necessary background about differential geome-
try, i.e. we focus on the main geometric concepts of Rie-
mannian manifolds, nonparametric estimation on such man-
ifolds and the respective extensions to the tensor manifold
endowed with two Riemannian metrics. The explicit for-
mulation of a KDE on tensor manifold respecting the non-
flat nature of the space as well as the respective application
to the foreground detection problem are the core contribu-
tions of the paper. Overall we conclude that the consequent
usage of the intrinsic Riemannian structure of the manifold
for model derivation in conjunction with a suitable nonpara-
metric estimation scheme for the underlying density, yields
the most accurate and reliable approach to foreground de-
tection from tensor-valued images presented so far.
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