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Abstract
This work presents a novel Bayesian formulation for aligning faces in unseen im-

ages. Our approach is closely related to Constrained Local Models (CLM) and Active
Shape Models (ASM), where an ensemble of local feature detectors are constrained to
lie within the subspace spanned by a Point Distribution Model (PDM). Fitting a model
to an image typically involves two steps: a local search using a detector, obtaining re-
sponse maps for each landmark (likelihood term) and a global optimization that finds the
PDM parameters that jointly maximize all the detection responses. The global optimiza-
tion can be seen as a Bayesian inference problem, where the posterior distribution of
the PDM parameters (including pose) can be inferred in a maximum a posteriori (MAP)
sense. Faces are nonrigid structures described by continuous dynamic transitions, so
it is crucial to account for the underlying dynamics of the shape. We present a novel
Bayesian global optimization strategy, where the prior is used to encode the dynamic
transitions of the PDM parameters. Using recursive Bayesian estimation we model the
prior distribution of the data as being Gaussian. The mean and covariance were assumed
to be unknown and treated as random variables. This means that we estimate not only
the mean and the covariance but also the probability distribution of the mean and the
covariance (using conjugate priors). Extensive evaluations were performed on several
standard datasets (IMM, BioID, XM2VTS and FGNET Talking Face) against state-of-
the-art methods while using the same local detectors. Finally, qualitative results taken
from the challenging Labeled Faces in the Wild (LFW) dataset are also shown.

1 Introduction
Non-rigid image registration of human faces in unconstrained environments, also known
as facial alignment in the wild, is a central problem in Computer Vision with applications
including tracking, motion estimation, model-based recognition (both identity and facial ex-
pression), etc. The goal of parametric deformable fitting is to find the Point Distribution
Model (PDM) [19] parameters that best describe a face in a target image. Several strate-
gies have been proposed, which can be categorized as being either holistic (generative) or
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patch-based (discriminative). The holistic representations [21][11] model the appearance of
all image pixels describing a face. This representation synthesizes the expected appearance
instance allowing a high registration accuracy. Although, poor performance is shown under
variations of identity, expression, pose, lighting or non-rigid motion, due to the huge dimen-
sional representation of the appearance. Typically, target individuals must be included in the
training dataset otherwise the fitting quality will be very poor.

Recently, discriminative-based methods, such as the Constrained Local Model (CLM)
[20][5][17][7][23], have been proposed. These approaches improve the generic face rep-
resentation by accounting only for the local correlations between pixel values. Both shape
and appearance are combined by constraining an ensemble of local feature detectors to lie
within the subspace spanned by the PDM. The CLM implements a two step fitting strategy: a
local search and a global optimization. The first step involves an exhaustive local search us-
ing an expert feature detector, obtaining response maps for each landmark (likelihood map).
The second step (the global optimization) finds the PDM parameters that jointly maximize
the detection responses. Most popular optimization strategies approximate the landmark
response maps by simple parametric forms (Weighted Peak Responses [20], Gaussians Re-
sponses [23], Mixture of Gaussians [14]) and perform the global optimization over these
forms instead of the original response maps. As the local detectors are designed to operate
fast, having small local support and must cover a large appearance variation they can suffer
from detection ambiguities. In SCMS [12] the authors attempt to deal with these ambigui-
ties by nonparametrically approximating the response maps using the mean-shift algorithm.
However, their global optimization is essentially a regularized projection of the mean-shift
vector for each landmark onto the subspace of plausible shape variations, being sensitive to
outliers (when the mean-shift output is very far away from the correct landmark location).

The patch responses can be embedded into a Bayesian inference problem, where the pos-
terior distribution of the PDM parameters can be inferred in a maximum a posteriori (MAP)
sense [22]. The Bayesian paradigm provides an effective fitting strategy, since it combines in
the same framework both the shape prior and multiple sets of patch alignment classifiers to
further improve the accuracy. Faces are nonrigid structures described by continuous dynamic
transitions, so it is crucial to account for the underlying dynamics of the shape.

1.1 Main Contributions

1. We present a novel Bayesian global optimization strategy designed to infer both the
PDM and the pose parameters, in a maximum a posteriori (MAP) sense, by explicitly
modelling the prior distribution (encoding the dynamic transitions of the PDM pa-
rameters). Using recursive Bayesian estimation we model the prior distribution of the
data as being Gaussian. The mean and covariance were assumed to be unknown and
treated as random variables. This means that we estimate not only the mean and the
covariance but also the probability distribution of the mean and the covariance (using
conjugate priors).

2. We show that aligning the PDM using a Bayesian approach offers a significative in-
crease in performance, in both fitting still images and video sequences, when com-
pared with state-of-the-art first order forwards additive methods [20][23][12]. We
confirm experimentally that the MAP parameter update outperforms the standard op-
timization strategies, based on maximum likelihood solutions (least squares).
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(a) Local search regions.
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(b) F−1{H∗i }
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(c) pi(zi) (d) Examples of the global alignment in the LFW datset [10].

Figure 1: A Point Distribution Model (PDM) is combined with an ensemble of local feature
detectors. The novel Bayesian global optimization strategy jointly combines all detectors
scores, in a MAP sense, by explicitly modelling the prior distribution. a) Image showing
the search region for some landmarks. b) The local detector [8]. c) Detectors responses for
the correspondent highlighted landmarks. d) Qualitative image alignment examples in the
challenging Labeled Faces the Wild dataset [10].

3. Extensive evaluations were performed on several standard datasets (IMM [15], BioID
[16], XM2VTS [13] and FGNET Talking Face [9]) against state-of-the-art methods
while using the same local detectors. Qualitative results of the challenging Labeled
Faces in the Wild (LFW) [10] dataset are also shown.

2 The Shape Model - PDM
The shape s of a Point Distribution Model (PDM) [19] is represented by the 2D vertex loca-
tions of a mesh, with a 2v dimensional vector s = (x1,y1, . . . ,xv,yv)

T . The traditional way of
building a PDM requires a set of shape annotated images that are previously aligned in scale,
rotation and translation by Procrustes Analysis. Applying a PCA to a set of aligned training
examples, the shape can be expressed by the linear parametric model

s = s0 +Φbs +Ψq (1)

where s0 is the mean shape (also referred to as the base mesh), Φ is the shape subspace matrix
holding n eigenvectors (retaining a user defined variance, e.g. 95%), bs is a n dimensional
vector of shape parameters, q is vector that contains the four similarity pose parameters and
Ψ is a 2v×4 matrix holding four special eigenvectors that linearly model the 2D pose [11].

3 Global PDM Optimization
We propose a global optimization method (Bayesian Active Shape Models - BASM) where
the deformable model fitting goal (that follows the parametric form eq.1) is formulated as a
global shape alignment problem in a maximum a posteriori (MAP) sense.

Given a 2v vector of observed positions y, the goal is to find the optimal set of parameters
b∗s that maximizes the posterior probability of being its true position. Using an Bayesian

Citation
Citation
{G.B.Huang, M.Ramesh, T.Berg, and E.L.-Miller} 2007

Citation
Citation
{D.S.Bolme, J.R.Beveridge, B.A.Draper, and Y.M.Lui} 2010

Citation
Citation
{G.B.Huang, M.Ramesh, T.Berg, and E.L.-Miller} 2007

Citation
Citation
{M.Nordstrom, M.Larsen, J.Sierakowski, and M.Stegmann} 2004

Citation
Citation
{O.Jesorsky, K.Kirchberg, and R.Frischholz} 2001

Citation
Citation
{K.Messer, J.Matas, J.Kittler, J.Luettin, and G.Maitre} 1999

Citation
Citation
{FGNet} 2004

Citation
Citation
{G.B.Huang, M.Ramesh, T.Berg, and E.L.-Miller} 2007

Citation
Citation
{T.F.Cootes and C.J.Taylor} 2004

Citation
Citation
{I.Matthews and S.Baker} 2004



4 P. MARTINS: LET THE SHAPE SPEAK - DISCRIMINATIVE FACE ALIGNMENT

approach, the optimal shape parameters are

b∗s = argmax
bs

p(bs|y) ∝ p(y|bs)p(bs) (2)

where y is the observed shape, p(y|bs) is the likelihood term and p(bs) is a prior distribution
over all possible configurations.

The complexity of the problem in eq.2 can be reduced by making some simple assump-
tions. Firstly, conditional independence between landmarks can be assumed simply by sam-
pling each landmark independently. Secondly, it can also be considered that we have an
approximate solution to the true parameters (b≈ b∗s ). Combining these approximations, the
eq.2 can be rewritten as

p(b|y) ∝

(
v

∏
i=1

p(yi|b)

)
p(b|b∗k−1) (3)

where yi is the ith landmark coordinates and b∗k−1 is the previous optimal estimate of b.

3.1 The Likelihood Term
The likelihood term, includes the PDM model (in eq.1), becoming the following convex
energy function:

p(y|b) ∝ exp

−1
2
(y− (s0︸ ︷︷ ︸

∆y

+Φb))T
Σ
−1
y (y− (s0 +Φb))

 (4)

where ∆y is the difference between the observed and the mean shape and Σy is the uncertainty
of the spatial localization of the landmarks (2v×2v block diagonal covariance matrix). From
the probabilistic point of view, the likelihood term follow a Gaussian distribution given by
p(y|b) ∝N (∆y|Φb,Σy).

3.1.1 Finding the Likelihood Parameters

This section briefly describes several local strategies to represent the true response maps
by a probabilistic model (parametric and nonparametric). We also describe how to extract
from each probabilistic model the likelihood term (the observed shape y and the landmark
uncertainty covariance Σy).

Let zi = (xi,yi) be a candidate to the ith landmark, being yc
i the current landmark estimate,

Ωyc
i

a L×L patch centered at yc
i , ai a binary variable that denotes correct landmark alignment,

Di the score of a generic local detector and I the target image up to a similarity transformation
(typically the detector is designed to operate at a given scale). The probability of pixel zi to
be aligned is given by

pi(zi) = p(ai = 1|I(zi),Di) =
1

1+ e−aiDi(I(zi))
(5)

where the detector score is converted to probability using the logistic function. The likeli-
hood parameters yi and Σyi can be found by minimizing [22]

arg min
yi,Σyi

∑
zi∈Ωyc

i

pi(zi)N (zi|yi,Σyi) (6)
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where several strategies can be used to do this optimization.
Weighted Peak Response (WPR): The simplest solution is to take the spatial location

where the response map has a higher score [20]. The new landmark position is then weighted
by a factor that reflects the peak confidence. Formally, the WPR solution is given by

yWPR
i = max

zi∈Ωyc
i

(pi(zi)) , Σ
WPR
yi

= diag(pi(yWPR
i )−1) (7)

that is equivalent to approximate each response map by an isotropic GaussianN (zi|yWPR
i ,ΣWPR

yi
).

Gaussian Response (GR): The previous approach was extended in [23] to approximate
the response maps by a full Gaussian distribution N (zi|yGR

i ,ΣGR
yi

). This is equivalent to fit a
Gaussian density to weighted data. Defining d = ∑zi∈Ωyc

i
pi(zi), the solution is given by

yGR
i =

1
d ∑

zi∈Ωyc
i

pi(zi)zi, Σ
GR
yi

=
1

d−1 ∑
zi∈Ωyc

i

pi(zi)(zi−yGR
i )(zi−yGR

i )T . (8)

Kernel Density Estimator (KDE): The response maps can also be approximated by a
nonparametric representation, namely using a Kernel Density Estimator (KDE) (isotropic
Gaussian kernel with a bandwidth σ2

h ). Maximizing over the KDE is typically performed
by using the well-known mean-shift algorithm [12]. The kernel bandwidth σ2

h is a free
parameter that exhibits a strong influence on the resulting estimate. This problem can be
addressed by an annealing bandwidth schedule [3]. It can be shown that there exists a σ2

h
value such that the KDE is unimodal. As σ2

h is reduced, the modes divide and the smoothness
of KDE decreases, guiding the optimization towards the true objective.

The ith annealed mean-shift landmark update and its uncertainty are given by

yKDE(τ+1)
i ←

∑zi∈Ωyc
i

zi pi(zi)N (yKDE(τ)
i |zi,σ

2
h j

I2)

∑zi∈Ωyc
i

pi(zi)N (yKDE(τ)
i |zi,σ2

h j
I2)

, Σ
KDE
yi

=
1

d−1 ∑
zi∈Ωyc

i

pi(zi)(zi−yKDE
i )(zi−yKDE

i )T , (9)

where I2 is a two-dimensional identity matrix and σ2
h j

represents the decreasing bandwidth.

3.2 The Prior Term
Faces are nonrigid structures described by continuous dynamic transitions. In the Bayesian
paradigm the prior term can be used to encode the underlying dynamic of the shape. The
prior term follows a Gaussian distribution with mean µb and covariance Σb

p(bk|bk−1) ∝N (bk|µb,Σb). (10)

Mean µb and covariance Σb of the data are assumed to be unknown and modeled as
random variables ([1] pag.87-88). Recursive Bayesian estimation can be applied to infer the
parameters of the prior distribution in eq.10. Defining b as an observable vector, the Bayes
theorem tells us that the joint posterior density can be written as

p(µb,Σb|b) ∝ p(b|µb,Σb)p(µb,Σb). (11)

Performing recursive Bayesian estimation with new observations requires that joint prior
density p(µb,Σb) should have the same functional form than the joint posterior density
p(µb,Σb|b). The joint prior density, conditioning on the covariance Σb, can be written as

p(µb,Σb) = p(µb|Σb)p(Σb). (12)
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The previous condition is true if we assume that the covariance follow an inverse-Wishart
distribution and µb|Σb follow a normal distribution (the conjugate prior for a Gaussian with
known mean is an inverse-Wishart distribution [1])

Σb ∼ Inv-Wishartυk−1(Λ
−1
υk−1

), µb|Σb ∼N (θk−1,
Σb

κk−1
) (13)

where υk−1 and Λk−1 are the degrees of freedom and scale matrix for the inverse-Wishart dis-
tribution, respectively. θk−1 is the prior mean and κk−1 is the number of prior measurements.
According with these assumptions, the joint prior density becomes

p(µb,Σb) ∝ |Σb|−(υk−1+n)/2+1 exp
(
−1

2
tr(Λk−1Σ

−1
b )− κk−1

2
(µb−θk−1)T

Σ
−1
b (µb−θk−1)

)
, (14)

a normal-inverse Wishart distribution (the product between a Gaussian and an inverse-
Wishart). We recall that n is the number of shape parameters.

The inference step in eq.11 involves a Gaussian likelihood and the joint prior p(µb,Σb),
resulting in a joint posterior density of the same family (conjugate prior for a Gaussian with
unknown mean and covariance), i.e. following a normal inverse-Wishart(θk,Λk/κk;υk,Λk)
distribution with the hyperparameters [1]:

υk = υk−1 +m, κk = κk−1 +m (15)

θk =
κk−1

κk−1 +m
θk−1 +

m
κk−1 +m

b (16)

Λk = Λk−1 +
m

∑
i=1

(bi−b)(bi−b)T +
κk−1m

κk−1 +m
(b−θk−1)(b−θk−1)T (17)

where b is the mean of the new samples, m the number of samples used to update the model.
The posterior mean θk is a weighted average between the prior mean θk−1 and the sample
mean b. The posterior degrees of freedom are equal to prior degrees of freedom plus the
sample size. In our case, the second term in eq.17 (∑M

i=1 · · ·) is null because the model is
updated with one sample each time (m = 1).

Marginalizing over the joint posterior distribution p(µb,Σb|b) (eq.11) with respect to Σb
gives the marginal posterior distribution for the mean of the form

p(µb|b) ∝ tυk−n+1(µb|θk,Λk/(κk(υk−n+1))). (18)

where tυk−n+1 is the multivariate Student-t distribution with υk−n+1 degrees of freedom.
Using the expectation of marginal posterior distribution p(µb|b) as the model parameters

at time k, we get (see table of expectation for multivariate t-distributions e.g. [1] pag.576).

µbk = E(µb|b) = θk. (19)

Similarly, marginalizing over the joint posterior distribution p(µb,Σb|b) with respect to
µb gives the marginal posterior distribution p(Σb|b) that follows an inverse Wishart distri-
bution. The expectation for marginal posterior covariance is (see table of expectation for
inverse Wishart distributions e.g. [1] pag.575)

Σbk = E(Σb|b) = (υk−n−1)−1
Λk. (20)

.
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3.3 Global Alignment Maximum a Posteriori (MAP)
In Bayesian inference, when the likelihood and the prior are Gaussian distributions the pos-
terior is also a Gaussian. Consequently, a possible solution to the global alignment, can be
given by the Bayes’ theorem for Gaussian variables ([2], pag.90), considering p(bk|bk−1) a
prior Gaussian distribution for bk and p(y|bk) a likelihood Gaussian distribution. Note that,
the conditional distribution p(y|bk) has a mean that is a linear function of bk and a covari-
ance which is independent of bk (eq.4). However, we further extend this result by adding
two main components: (1) use a second order estimate of the latent variables (the covariance
Σk−1). Using the covariance of the latent variables is a crucial issue, as it allows to account
for the confidence on the current estimate (i.e. the amount of uncertainty in bk−1 should be
considered in the estimate of bk). (2) Bayesian fusion of detectors. Allow to multiple (M)
local detectors (∑M

m=1 · · ·) to be seamlessly incorporated into the model, usually increase the
fitting accuracy. The recursive posterior distribution takes the form of

p(bk|yk, . . . ,y0) ∝N (bk|µk,Σk) (21)

Σk =

(
(Σbk +Σk−1)−1 +Φ

T
M

∑
m=1

(
Σ
−1
y(m)

)
Φ

)−1

(22)

µk = Σk

(
Φ

T
M

∑
m=1

(
Σ
−1
y(m)

∆y(m)

)
+(Σbk +Σk−1)−1

µbk

)
(23)

where ∆y(m), Σy(m) are the multiple likelihood observations.
The pose parameters q are estimated in the same way. The parameters of the normal

inverse-Wishart distribution (eqs.15, 16 and 17) are kept up date and the global optimization
step is used. However, the term Φ must be changed by Ψ in both eqs.22 and 23. See
algorithm 1 where the overall global optimization is summarized.

Precompute: PDM s0, Φ, Ψ,ΛPCA = diag(λ1, . . . ,λn), where λi is the ith PCA eigenvalue and local detectors H∗i1
Initial estimate of the shape/pose parameters and their covariances (b0,Σ0) ; (q0,Σ

q
0)2

(shape: υ0 = 2n, κ0 = 1, θ0 = b0, Λ0 = nΛPCA) (pose: υ
q
0 = 8, κ

q
0 = 1, θ

q
0 = q0, Λ

q
0 = 4×diag([0.05 0.005 5 5]2))3

repeat4
Warp image I to the base mesh using the current pose parameters qk [0.5ms]5
Generate current shape s = s0 +Φbk +Ψqk6
for Landmark i = 1 to v do7

Evaluate the M detector(s) response(s), eq.24 [M x 3ms]8
Find the likelihood parameters yi and Σyi using a local strategy (section 3.1.1, e.g. if KDE use eqs.9)9

end10
Estimate the pose parameters: (shape observation: ∆y = y−s0)[0.15ms]11

- Update the parameters of the inverse Wishart distribution using eqs.15, 16 and 1712
- Expectation of the prior parameters µqk = θ

q
k and Σqk = (υq

k −4−1)−1Λ
q
k13

- Evaluate the pose parameters qk and the covariance Σqk by eqs.23 and 22, (changing Φ by Ψ)14
Estimate the shape parameters: (shape observation: ∆y = y−s0−Ψqk) [0.25ms]15

- Update the parameters of the inverse Wishart distribution using eqs.15, 16 and 1716
- Expectation of the prior parameters µbk = θk and Σbk = (υk−n−1)−1Λk17
- Evaluate the shape parameters bk and the covariance Σbk by eqs.23 and 2218

until ||bk−bk−1|| ≤ ε or maximum number of iterations reached ;19

Algorithm 1: Overview of the Bayesian Active Shape Models (BASM) method. The performance of BASM
is comparable to ASM [20], CQF [23] or SCMS [12] depending of the local strategy BASM-WPR, BASM-GR
or BASM-KDE, respectively. It achieves near real-time performance. The bottleneck is always obtaining the
response maps (M x 3ms x number landmarks), although it can be done in parallel.
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3.4 Hierarchical Search (BASM-KDE-H)
This section propose a slightly different annealing approach. When the local response maps
are approximated by KDE representations, the global alignment can be done by a hierarchi-
cal search. The mean-shift bandwidth annealing schedule can be combined with additional
global optimization steps. Bottom levels use highest KDE bandwidth and perform global
optimization steps (section 3.3). Then the next level shrinks the bandwidth and repeats the
process. Using this strategy the KDE annealing is performed between hierarchical levels.

4 Evaluation Results
The experiments were conducted on several databases with publicly available ground truth.
(1) The IMM [15] database that consists on 240 annotated images of 40 different human
faces presenting different head pose, illumination, and facial expression (58 landmarks). (2)
The BioID [16] dataset contains 1521 images, each showing a near frontal view of a face
of 23 subjects (20 landmarks). (3) The XM2VTS [13] database has 2360 images frontal
faces of 295 subjects (68 landmarks). (4) The tracking performance is evaluated on the
FGNet Talking Face (TF) [9] video sequence that holds 5000 frames of video of an individual
engaged in a conversation (68 landmarks). (5) Finally, a qualitative evaluation was also
performed using the Labeled Faces in the Wild (LFW) [10] database that contains images
taken under variability in pose, lighting, facial expression, occlusions, backgrounds, etc.

4.1 Local Detectors
Performing a fair comparison requires that all the evaluated global optimization strategies
use the same local detector. We experimentally found that the recently proposed MOSSE
filter [8] perform better than the most used detector: the linear classifier build from aligned
(positive) and misaligned (negative) examples [23][12]. As so, all the experiments use the
MOSSE filter as local landmark detector. Briefly, the score of the ith landmark detector, in
eq.5, is given by

Di(I(yi)) = F−1{F{I(yi)}�H∗i }, with H∗i =
∑

N
j=1 G j�F{I j}∗

∑
N
j=1F{I j}�F{I j}∗

, (24)

where H∗i is the MOSSE filter [8], I(yi) a vectorized patch of pixel values sampled at yi, (F)
is the 2D Fourier transform, (∗) means the complex conjugate and � the Hadamard product.
I j are aligned patch examples with size 128× 128 (a power of two patch size to speed up
the FFT computation, however only a 40×40 subwindow of the output is considered), N is
the number of training images and G is the desired output which is set to be a 2D Gaussian
function centered at the landmark with 3 pixels of standard deviation. In the following
section, the performance of a Bayesian fusion of detections is also evaluated. The additional
detector used is still a MOSSE filter but built from magnitude of image gradients ||∇I j||.

4.2 Evaluating Global Optimization Strategies
In this section the BASM optimization strategy is evaluated w.r.t. state-of-the-art global
alignment solutions. The proposed BASM and BASM-H methods are compared with (1)
ASM [20], (2) CQF [23], (3) BCLM [22], (4) GMM [14] using three Gaussians (GMM3)
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Reference 7.5 RMS IMM (240 images) XM2VTS (2360 images) BioID (1521 images)
ASM 50.0 30.7 70.0
BASM-WPR (our method) 58.4 (+8.4) 47.4 (+16.7) 77.1 (+7.1)
CQF 45.4 10.9 47.0
GMM3 40.8 (-4.6) 10.4 (-0.5) 51.7 (+4.7)
BCLM-GR 48.3 (+2.9) 15.9 (+5.0) 54.2 (+7.2)
BASM-GR (our method) 51.8 (+6.4) 19.7 (+8.8) 63.5 (+16.5)
SCMS-KDE 54.6 35.7 69.0
BCLM-KDE 57.1 (+2.5) 43.4 (+7.7) 71.9 (+2.9)
BASM-KDE (our method) 65.4 (+10.8) 57.0 (+21.3) 80.3 (+11.3)
BASM-KDE-H (our method) 64.0 (+9.4) 56.6 (+20.9) 79.9 (+10.9)
BASM-KDE Fusion of 2 Detectors 72.5 (+17.9) 58.7 (+23.0) 88.2 (+19.2)

Figure 2: Fitting performance curves. The table shows quantitative values taken by setting
a fixed RMS error amount (7.5 pixels - vertical line in the graphics). Each table entry show
how many percentage of images converge with less (or equal) RMS error than the reference.
The results show that our proposed methods outperform all the other (using all the local
strategies WPR, GR and KDE). AVG is the location provided by the initial estimate [18].

and (5) SCMS [12]. Note that the BASM can be used with different local strategies to ap-
proximate the response maps (e.g. WPR, GR or KDE as described in section 3.1.1 - Note that
ASM, CQF and SCMS use as local strategy the WPR, GR and KDE, respectively). In these
experiments we fixed the local strategy as a KDE (BCLM-KDE, SCMS-KDE, BASM-KDE)
in order to compare the global optimization approaches. The same bandwidth schedule of
σ2

h = (15,10,5,2) is always used. The results from ASM, CQF and GMM3 are provided as a
baseline. In all cases, the nonrigid parameters start from zero, the similarity parameters were
initialized by a face detection (Adaboost [18]) and the model was fitted until convergence
(limited to a maximum of 20 iterations).

Figures 2 shows the fitting performance curves for the IMM, XM2VTS and BioID datasets,
respectively. These fitting curves, also adopted by [4][5][6][23][12], show the percentage of
faces that achieved convergence with a given Root Mean Square (RMS) error. The table,
in the same figure 2, shows quantitative values taken by sampling the curves using a fixed
RMS error amount (7.5 pixels, shown as a vertical line in graphics). To avoid confusion,
the remainder local strategies (WPR and GR) appear only in the table. Results show that
CQF performs better than GMM3, mainly because GMM is very prone to local optimums
due to its multimodal nature. The main drawback of CQF is the limited accuracy due to
the over-smoothness of the response map.The BCLM is slightly better than SCMS due to
its improved parameter update (MAP update vs first order forwards additive). The SCMS
improves the results when compared to CQF due to the high accuracy provided by the mean-
shift. In some cases, the ASM achieves a comparable performance to the SCMS; the reason
for this relies on the excellent performance of the MOSSE detector. The proposed Bayesian
global optimization (BASM) outperforms all previous methods. Explicitly modelling the
prior distribution and using the covariance of the latent variables offers a significative in-
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Figure 3: Evaluation of the tracking performance of several fitting algorithms on the FGNET
Talking Face [9] sequence. The values on legend box are the mean and standard deviation
RMS errors, respectively. Top images show BASM-KDE fitting examples.

crease in fitting performance. The Bayesian fusion of (M = 2) local detectors was evaluated
using the method that previously achieved the best performance (BASM-KDE). The results
(BASM-KDE Fusion) show that including multiple sets of patch alignment classifiers further
improve (a lot) the accuracy. In fact, this approach achieves the overall best results.

Tracking performance is evaluated in the FGNET Talking Face video sequence (fig. 3).
Each frame is fitted using as initial estimate the previously estimated shape and pose pa-
rameters. The relative performance between the global optimization approaches is similar to
the previous experiments, where the BASM techniques yields the best performance. Here,
the hierarchical annealing version of BASM-KDE (BASM-KDE-H) performs slightly bet-
ter, but at the cost of more iterations. The fusion of local detectors (BASM-KDE Fusion), as
expected, improves even further the performance. Qualitative evaluation is also performed
on the Labeled Faces in the Wild dataset [10], where some results can be seen in figure 1.

5 Conclusions

This work presents a novel Bayesian formulation for aligning faces in unseen images. Fitting
a Point Distribution Model (PDM) to an image involves a global optimization step where
the responses of an ensemble of local feature detectors are jointly maximized. The prior
distribution models the dynamic transitions of the PDM parameters, being continuously kept
up to date. The new global optimization strategy infers both the PDM and pose parameters,
in a MAP sense, by explicitly modelling the prior distribution. Using recursive Bayesian
estimation, a Gaussian prior distribution is modeled, treating the mean and covariance as
random variables. This means that we estimate not only the mean and the covariance but
also the probability distribution of the mean and the covariance (using conjugate priors).
Extensive evaluations were performed on several standard datasets against state-of-the-art
methods while using the same local detectors. We show that, generic image alignment by
explicitly modelling the prior distribution offers a significant increase in performance.
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