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Abstract

This work presents a novel non-parametric Bayesian for-
mulation for aligning faces in unseen images. Popular ap-
proaches, such as the Constrained Local Models (CLM) or
the Active Shape Models (ASM), perform facial alignment
through a local search, combining an ensemble of detec-
tors with a global optimization strategy that constraints the
facial feature points to be within the subspace spanned by
a Point Distribution Model (PDM). The global optimiza-
tion can be posed as a Bayesian inference problem, look-
ing to maximize the posterior distribution of the PDM pa-
rameters in a maximum a posteriori (MAP) sense. Previ-
ous approaches rely exclusively on Gaussian inference tech-
niques, i.e. both the likelihood (detectors responses) and
the prior (PDM) are Gaussians, resulting in a posterior
which is also Gaussian, whereas in this work the poste-
rior distribution is modeled as being non-parametric by a
Kernel Density Estimator (KDE). We show that this poste-
rior distribution can be efficiently inferred using Sequential
Monte Carlo methods, in particular using a Regularized
Particle Filter (RPF). The technique is evaluated in detail
on several standard datasets (IMM, BioID, XM2VTS, LFW
and FGNET Talking Face) and compared against state-of-
the-art CLM methods. We demonstrate that inferring the
PDM parameters non-parametrically significantly increase
the face alignment performance.

1. Introduction
Facial alignment is a fundamental problem of computer

vision (e.g. tracking, recognition, security, video com-
pression, etc) which has been actively studied in the com-
munity with several degrees of success. Such alignment,
also known as facial registration, is a key stage that has
a huge impact on the robustness and quality of the later
processes/applications. A widely used approach consists
on seeking the parameters of a Point Distribution Model
(PDM) that best represents the face in a target image. Tradi-
tionally, the proposed deformable face fitting methods can
be divided in two major groups: generative (holistic) and

discriminative (patch-based) approaches. In the generative
paradigm, all the image pixels that describe the face are
used to encode its appearance, typically using an eigen-
based texture representation. The Active Appearance Mod-
els (AAM) [6, 22, 19] are probably the most popular gener-
ative method, achieving an impressive registration quality.
However, this representation generalizes poorly beyond un-
seen data, when target individuals are not included in the
training dataset. In recent years, there has been a growing
interest on discriminative-based methods, such as the Con-
strained Local Models (CLM) [8, 9, 10, 32], as it circum-
vents several of the drawbacks of generative methods by
improving the generic face representation. In this paradigm,
both appearance and shape are combined by compelling
a set of local feature detectors to lie within the subspace
spanned by the PDM. In general, all instantiations of CLM
are composed by a two phase fitting strategy. The first
phase generates a response map for each PDM landmark
(a likelihood map) using the local detectors. The second
phase consists in a global optimization strategy that esti-
mates the PDM parameters that jointly maximizes all the
response maps at once. Most optimization strategies aim
to approximate the responses maps by simple parametric
forms (Weighted Peak Responses [8], Gaussians Responses
[32, 26], Mixture of Gaussians [15]). However, due to the
landmark’s small support region and imperfect detectors
(designed to be fast), some detection ambiguities exist. The
Subspace Constrained Mean-Shift (SCMS) [27, 28] aims to
deal with these ambiguities by using a non-parametric rep-
resentation of the responses maps employing a Kernel Den-
sity Estimator (KDE). The mean-shift algorithm [5] is used
to maximize over the KDE, and afterwards all the landmark
updates are constrained to lie into the PDM subspace.

Recently a new paradigm emerged to solve the global
optimization [26, 20, 21]. This new strategy suggests to for-
mulate the global alignment as a Bayesian inference prob-
lem. The patch responses (likelihood) are embedded into
a Bayesian framework, where the posterior distribution of
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the global warp is inferred in a maximum a posteriori sense
(MAP) [26, 20, 21]. The Bayesian CLM (BCLM) [26]
makes basic inference of the PDM parameters using Gaus-
sian assumptions of both likelihood and prior, leading to
a posterior distribution that is also Gaussian. Afterwards,
Discriminative Bayesian Active Shape Models (DBASM)
[20] were proposed, where the alignment problem was for-
mulated in terms of a Linear Dynamical System (LDS) us-
ing 2nd order updates of the parameters. The DBASM effec-
tively accounts for the uncertainty on previous estimates as
it models the covariance of the parameters. Although the in-
crease in performance of DBASM, Gaussian inference tech-
niques were still used, which in some scenarios can degrade
alignment estimates (e.g. multimodal likelihood).

This work extends the CLM formulation generalizing the
posterior distribution of the PDM parameters to be non-
parametric, in particular, by a continuous KDE. Note that
our approach is rather different than SCMS that just uses a
non-parametric representation of the response maps (likeli-
hood term). In SCMS, the landmark’s mean-shift updates
are just observations for the global optimization, which is
a regularized projection onto the shape subspace. Here,
the full non-parametric distribution of the response maps
is accounted for, with the PDM parameters of the over-
all global alignment being inferred using Sequential Monte
Carlo (SMC) methods [12, 11], in particular, with a Regu-
larized Particle Filter (RPF) [24]. Additionally, KDE band-
width selection is provided.

Recently, some remarkable face alignment techniques
have been proposed, using: non-parametric shape models
[1], part-based tree structure models [33] (providing face
detection, pose estimation and feature localization), regres-
sion based shape updates [4], among others. We remark that
these methods rely on non-parametric shape models and
therefore should no be compared with ours. Nevertheless,
this paper aims to extend the widely used CLM methodol-
ogy, by non-parametric inference techniques, while main-
taining its linear shape regularization model.

1.1. Main Contributions

1. This work presents a novel non-parametric Bayesian
global optimization strategy that infers both the PDM
and the pose parameters, in a maximum a posteriori
(MAP) sense. Previous strategies make Gaussian as-
sumptions of the posterior distribution, either making
constant [26] or second order [20] predictions of the
parameters. Here, we generalize the posterior distri-
bution to be non-parametric, being approximated by a
continuous KDE. We show that the posterior distribu-
tion of the global warp can be efficiently inferred using
a Regularized Particle Filter (RPF) [24].

2. Previous PDM alignment methods evaluate the like-
lihood terms assuming conditional independence be-

Figure 1. In Constrained Local Models (CLM) an ensemble of
local feature detectors are constrained to lie in the span of a
Point Distribution Model (PDM). The proposed global optimiza-
tion strategy infers the PDM parameters, in a MAP sense, using
a non-parametric posterior distribution. The left image shows the
search regions for some highlighted landmarks, followed by a col-
umn with the detectors responses maps and their local detectors
(MOSSE filters [3]), respectively.

tween landmarks [8, 32, 26, 27, 20, 21]. Typically,
the likelihood parameters (landmark observations) are
found by individual/independent parametric or non-
parametric representations of the landmark’s response
maps. The approach presented in this paper does not
make conditional independence assumptions and does
not require a so-called local landmark optimization.

3. Extensive evaluations were performed on a range of
standard datasets (IMM [25], BioID [18], XM2VTS
[23], FGNET Talking Face [13]) and the challenging
LFW [16]) against state-of-the-art methods, while us-
ing the same local landmark detectors. We show that
aligning the PDM using a non-parametric Bayesian ap-
proach offers a significative increase in performance.

The remaining of the paper is organized as follows: sec-
tion 2 briefly explains the basics in ASM/CLM design.
Section 3 revisits the existing methods of Bayesian global
alignment and our non-parametric global optimization is
presented in section 4. Sections 5 and 6 present the experi-
mental evaluation and the conclusions, respectively.

2. Background
2.1. Linear Shape Model

The shape s of a Point Distribution Model (PDM) [7]
with v landmarks is represented by a vector with the 2D



vertex locations of a mesh s = (x1, y1, . . . , xv, yv)
T . In

essence the PDM describes a shape by the following linear
parametric model

s = S (s0 + Φb,q) (1)

where s0 is the mean shape (also known as the base mesh),
Φ is the shape subspace matrix holding n eigenvectors (or
the modes of deformation that retain a given amount of vari-
ance, e.g. 95%), b is a vector of shape parameters and
S(.,q) represents a similarity transformation function of the
q = [s, θ, tx, ty]T pose parameters (s, θ, tx, ty are the
scale, rotation and translations w.r.t. the base mesh s0, re-
spectively). Refer to [7] for additional details in PDMs.

2.2. Local Detectors

The appearance model of an ASM/CLM consists of an
ensemble of v local detectors [20, 27] (see figure 1). The
correlation of the jth landmark detector, evaluated at the
pixel location xj = (xj , yj), is given by

Dj(I(xj)) = hTj I(xj) (2)

where hj is a linear detector and I(xj) is a surrounding
L× L support region (image patch, denoted by Ωxj

). Note
that the landmark detectors are usually designed to oper-
ate at a given scale. The 2D ASM/CLM framework deals
with this by including a warp normalization step, in partic-
ular a similarity transformation into the base mesh. At this
stage the detector score must be converted into a probabil-
ity value. The simplest solution is to use a logistic function.
Defining aj to be a binary variable that denotes correct land-
mark alignment, the probability of pixel zj ∈ Ωxj

being
aligned is given by

p(aj = 1|Dj , I(zj)) =
1

1 + e−ajβ1Dj(I(zj))+β0
(3)

where β1 and β0 are the regression coefficient and intercept,
respectively. Note that a proper probability is used, always
non-negative and p(aj = 1|I(zj))+p(aj = −1|I(zj)) = 1.

3. Existing Global Optimization Strategies
In a Bayesian setting [20, 26], the optimal shape param-

eters b∗ are given by the Bayes’ theorem, where we seek to
maximize the following posterior probability

b∗ = arg max
b
p(b|y) ∝ p(y|b)p(b) (4)

with y being a 2v vector that represents the observed shape
(measurement), p(y|b) is the likelihood term (that comes
from the response maps) and p(b) is the prior term that de-
fines the knowledge of the model (the PDM). Conditional
independence between landmarks is usually assumed, sam-
pling each landmark independently, hence the overall like-
lihood becomes the individual contribution for each land-
mark, p(y|b) ≈

∏v
j=1 p(yj |b).

3.1. Likelihood Term

In general, previous approaches define the likelihood
term by the following Gaussian form

p(y|b) ∝ exp
(
−1

2
(y− (s0 + Φb))TΣ−1

y (y− (s0 + Φb))
)

(5)
where Σy is the uncertainty of the spacial localization of
the landmarks (being a 2v × 2v block diagonal covariance
matrix due to the conditional independence between land-
marks assumed). Note that the shape measurement is done
w.r.t. the base mesh s0. In general, the existing fitting ap-
proaches differ from each other in the way that the shape
measurement y and its uncertainty Σy are obtained from the
response maps. These methods can be considered as local
optimization strategies and the most used are:

Active Shape Models (ASM): The first and most simple
solution is to set each candidate to the localization where the
response map has its maximum score [8]. The uncertainty
is set to be inverse proportional to the peak value.

Convex Quadratic Fitting (CQF): The authors in [32]
extend the ASM by approximating the response maps by a
full Gaussian distribution. Generically, this means that the
’shape’ of the response maps carries more useful informa-
tion than just the amount of the detector score. This problem
reduces to fitting a 2D Gaussian to weighted data.

Subspace Constrained Mean-Shifts (SCMS): In
SCMS [27] the response maps were approximated by a non-
parametric representation using a Kernel Density Estimator
(KDE) [29] (isotropic Gaussian kernels with a given band-
width). The mean-shift algorithm [5], with a decreasing
annealing bandwidth schedule, was used to maximize over
the KDE. In the original formulation [27] each shape obser-
vation consists of individual mean-shift landmark updates
and the uncertainty was given by Σy = I2v , this means that
all landmarks will have the same weight and therefore con-
tribute equally to the solution. Later in [28], a robust norm
(Geman-McClure) was used to select the most reliable land-
marks. Finally, the authors in [20] model the uncertainty of
each mean-shift update by a full 2D Gaussian distribution.

3.2. Prior Term

By definition [30], the shape parameters b, follow a
multivariate Gaussian distribution b ∝ N (b|0,Λ), with
Λ = diag(λ1, . . . , λn), where λi denotes the PCA eigen-
value of the ith mode of deformation. The prior term is
then defined as

p(b) ∝ N (b|µb,Σb) (6)

where µb = 0 and Σb = Λ. The pose parameters (similar-
ity) are modeled using a non-informative (uniform) prior.



3.3. Global MAP Solution

When the likelihood and the prior terms are both Gaus-
sian distributions, the Bayes’ theorem for Gaussian vari-
ables [2, 26, 20] states that the posterior is also a Gaussian
distribution. Accordingly, the posterior is given by

p(bk|y) ∝ N (bk|µ,Σ) (7)

where µ = Σ(ΦTΣ−1
y y + Σ−1

b µb) and Σ = (Σ−1
b +

ΦTΣ−1
y Φ)−1. These equations are iteratively reused, where

subscript k represents the iteration number, along with the
response maps evaluated at the new updated locations, until
convergence. Note that, the prior term is kept unchanged.

3.4. Inference by a Linear Dynamic System (LDS)

Faces are nonrigid structures that are described by con-
tinuous dynamic transitions, i.e. faces deform continuously
in time. This constraint was exploited in DBASM [20],
where global alignment was formulated in terms of a Linear
Dynamic System (LDS). The LDS recursively computes a
Gaussian posterior probability using incoming (also Gaus-
sian) measurements and a linear model process. The state
and measurement equations can be written as

bk = Inbk−1 + q (8)
y− s0 = Φbk + r (9)

where is assumed that previous shape estimated parameters
bk−1 are connected to the current parameters bk by an iden-
tity relation In with noise. q ∼ N (0,Σb) is the additive dy-
namic noise, (y − s0) is the observed shape deviation from
the base mesh (related to the shape parameters by the linear
relation Φ in eq.1) and r is the additive measurement noise
following r ∼ N (0,Σy). The LDS inference accounts with
an adaptive prior, where the posterior distribution follow

p(bk|yk, . . . , y0) ∝ N (bk|µF
k,Σ

F
k) (10)

with the mean µF
k and covariance ΣF

k given by the well-
known Kalman Filter equations.

4. Non-Parametric Global Optimization
In the general case, the likelihood term p(yk|bk) instead

of being Gaussian, as in eq.5, it can be considered to be
multimodal (or non-parametric), hence the posterior distri-
bution p(bk|yk) can not be analytically computed since no
closed-form solution exists (opposed to the approaches re-
viewed in sections 3.3 and 3.4). A popular solution is to use
Sequential Monte Carlo (SMC) methods [12, 11], which
are also known as Particle Filters. These methods effec-
tively allow to perform (approximate) inference of the pos-
terior distribution when the likelihood (and prior) are arbi-
trary distributions. The most basic form of particle filter-
ing is called Sequential Importance Sampling (SIS) where

the main idea is to approximate the posterior distribution
with a set of N weighted samples {w(i)

k ,b(i)
k }Ni=1 (or parti-

cles). These particles are drawn from a proposal distribution
[11] and recursively updated to obtain an approximation to
the posterior distribution of the form p(bk|yk, . . . , y0) ≈∑N
i=1 w

(i)
k δ(bk − b(i)

k ) where δ(.) is the Dirac delta func-
tion centered at the particle b(i)

k . Each particle b(i)
k repre-

sents a possible shape (according to eq.1) and its weight
w

(i)
k represents its fitting quality. The number of particles

N is typically chosen as a trade-off between computational
effort and estimation accuracy. In practice, the SIS filter
leads to a degeneracy problem where only just a few par-
ticles will have a significant weight and all other particles
will have very small weights. This degeneracy problem is
typically dealt with resampling strategies.

The Sampling Importance Resampling (SIR) [14] also
known as Bootstrap or Condensation [17] filter is a vari-
ant of SIS where the proposal distribution is taken form the
state transition p(bk|bk−1) and resampling is applied at ev-
ery iteration, in which the overall PDM alignment reduces
to the following update equations

w
(i)
k ∝ p(yk|b

(i)
k ) = ρ

 v∏
j=1

p(aj = 1|Dj , I(yj));σ


(11)

b(i)
k ∼ p(bk|b(i)

k−1) ∝ N (bk|bk−1,Σb) (12)

where the weight of particle w(i)
k is given by a robust mea-

sure of its alignment. The alignment metric is defined
as the combined product of all landmarks

∏v
j=1 p(aj =

1|Dj , I(yj)) (for the sake of computational stability is
preferable to express alignment in terms of log-likelihoods,
or −

∑v
j=1 log(p(aj = 1|Dj , I(yj)))), being ρ(.;σ) a ro-

bust error norm and σ the scale parameters. Although sev-
eral norms can be used (e.g. the Tukey’s biweight, the Hu-
ber, or the Geman-McClure function), we simply use a non-
linear function that discards a given percentage of the worst
scored landmarks (the scale parameter σ is the threshold
e.g. 5%). In essence, a set of N possible/likely shapes are
drawn from the eq.12, following the same dynamic model
from section 3.4 and being weighted according to eq.11. It
is worth saying that better results were found by exploring
the search space by one shape parameter at a time.

The degeneracy problem is efficiently addressed using
the SIR filter (resampling every iteration), although a new
problem arises: the sample impoverishment, i.e. particles
with large weights are likely to be drawn multiples times
during resampling, whereas particles with small weights are
not likely to be drawn at all (a lack of diversity problem).

Modified particle filtering algorithms have been sug-
gested to handle the sample impoverish effect. A poten-
tial solution is to use the Regularized Particle Filter (RPF)



[24, 11]. In general terms, the RPF consists of a modi-
fied SIR particle filter in which the resampling process is
performed upon a density estimation. The RPF resamples
from a continuous approximation of the probability den-
sity p(bk|yk, . . . , y0), which is obtained by using the Kernel
Density Estimator method [29]

p(bk|yk, . . . , y0) ≈
N∑
i=1

w
(i)
k Kh(bk − b(i)

k ) (13)

where Kh is the kernel density centered at b(i)
k and h

is the kernel bandwidth. The kernel density is a sym-
metric probability density function defined on Rn, that
satisfies

∫
Kh(bk)dbk = 1,

∫
bkKh(bk)dbk = 0 and∫

||bk||2Kh(bk)dbk < ∞. A popular choice is the Gaus-
sian kernel. Moreover, the kernel bandwidth can be opti-
mally chosen, in the Mean Integrated Square Error (MISE)
sense, by using a whitening transformation. Whitening con-
sists of applying a linear transformation to achieve unit co-
variance of the data. In particular, the particles b(i)

k are
changed to A−1b(i)

k where S = AAT is the ensemble
covariance (A could be recovered by a square root fac-
torization, e.g. Cholesky factorization). The kernel den-
sity reduces to the following rescaled regularization kernel
det(A)−1

hn K
(

A−1bk

h

)
(n is the dimension of the shape pa-

rameters), where the optimal bandwidth (Gaussian density
with unit covariance [29]) is given by

hopt =
(

4
2N(n+ 2)

) 1
n+4

. (14)

Finally, we update the model’s parameters using the
expectation of the posterior distribution p(bk|yk, . . . , y0)
which is given by the average of the RPF resampled par-
ticles, as

b̂k =
∫ +∞

−∞
bk p(bk|yk, . . . , y0) dbk =

1
N

N∑
i=1

b̃
(i)

k . (15)

Pose and shape parameters are treated in two different
optimizations. In this context is preferable to optimize
the pose and shape parameters independently, dealing with
lower dimensional problems each time (nevertheless it can
be done all at once using a lot more particles). The algo-
rithm 1 summarizes the overall alignment.

5. Evaluation Results
The experimental evaluation was conducted in several

standard databases with publicly available ground truth,
namely: (1) The IMM [25] database that consists on 240 an-
notated images of 40 different individuals presenting differ-
ent head pose, illumination, and facial expression (58 land-
marks). (2) The BioID [18] dataset contains 1521 images,

Precompute: PDM (s0, Φ) and landmark detectors Dj1
Get an initial estimate of the shape/pose parameters (b0,q0)2
repeat3

Warp image I (into s0) using current pose parameters q4
for Landmark j = 1 to v do5

Eval response map: p(aj = 1|Dj , I(zj)); zj ∈ Ωxj6
end7
for Particle i = 1 to N do8

b(i)
k = b(i)

k−1 + d; d ∼ N (0,Σb)9

Generate shape for the ith Particle: s = s0 + Φb(i)
k10

w
(i)
k = ρ

“
−
Pv

j=1 log( p(aj = 1|Dj , I(sj)) ); σ
”

11
end12

Normalize weights: w̄
(i)
k = w

(i)
k (
PN

i w
(i)
k )−113

[eb(i)

k ]← Regularized Particle Filter resample [w̄k,b
(i)
k ]14

Update model’s parameters: b̂k = 1
N

PN
i=1

eb(i)

k15

until ||b̂k− b̂k−1|| ≤ ε or maximum number of iterations reached ;16

Algorithm 1: Non-parametric Bayesian Constrained Local
Models (npBCLM) algorithm. Note: optimizing the pose pa-
rameters require applying similar steps 7 to 15. The current
MatLab implementation takes around 1 second per image.

each showing a near frontal view of a face of 23 subjects
(20 landmarks). (3) The XM2VTS [23] database has 2360
images frontal faces of 295 subjects (68 landmarks). (4)
The Labeled Faces in the Wild (LFW) [16] database (12
landmarks) that contains images taken under variability in
pose, lighting, facial expression, occlusions, etc. (5) Fi-
nally, tracking performance is also evaluated in the FGNet
Talking Face [13] sequence that holds 5000 frames of video
of an individual engaged in a conversation (68 landmarks).

As in [1], the overall face alignment challenge was eval-
uated in the different datasets, by creating a measure of
facial asymmetry for each image. Natural symmetric fea-
tures such as the eyes out corners and mouth corners were
reflected about a vertical line passing the nose center and
the (normalized) average distances between them are com-
puted. This metric holds a lower value (close to zero) in
near frontal faces. Figure 2 shows this asymmetry measure
over the evaluated datasets. We can see that both BioID and
XM2VTS sets hold more symmetric images (more frontal),
by other hand, the IMM and LFW have indeed more chal-
lenging images with a lot more 3D pose variability.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

Asymmetry Error Metric (Inter−Ocular Normalized)

P
ro

po
rt

io
n 

of
 Im

ag
es

Facial Asymmetry

 

 

IMM
XM2VTS
BioID
LFW

Figure 2. Distribution of face asymmetry in the evaluated datasets.
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Reference em = 0.1 (vertical line) IMM (240 images) XM2VTS (2360 images) BioID (1521 images) LFW (13233 images)
ASM [8] 72.3 80.3 55.5 52.2
CQF [32] 65.6 75.7 34.3 46.6
BCLM [26] 67.1 76.4 35.8 48.2
GMM3 [15] 60.8 68.8 37.0 39.8
SCMS (ML) [27] 75.1 (0) 81.4 (0) 62.9 (0) 59.0 (0)
SCMS (MAP) [28] 76.7 (+1.6) 82.5 (+1.2) 65.7 (+2.8) 62.3 (+3.3)
DBASM-KDE [20] 79.5 (+4.4) 85.6 (+4.2) 70.8 (+7.9) 66.4 (+7.4)
npBCLM (our method) 84.9 (+9.7) 88.6 (+7.2) 77.3 (+14.3) 70.2 (+11.2)

Figure 3. The bar charts display the (normalized) average location error of the most salient facial features in each dataset. The fitting
performance curves are shown below. The table holds quantitative values taken by setting a fixed error amount (em = 0.1, i.e. the vertical
line in the graphics). Each table entry show how many percentage of images converge with less (or equal) error than the reference.

5.1. Fitting Performance
In this section we aimed to make a fair comparison, mak-

ing sure that all the evaluated optimization strategies use
the same local detector (i.e. the same likelihood source)
and are regularized by the same linear shape model. There-
fore the evaluation was made against similar CLM solu-
tions. All the experiments use the Minimum Output Sum
of Squared Error (MOSSE) [3] filters as local landmark de-
tectors, which has proven to perform better that most popu-
lar detectors [20], in particular when compared with linear
classifiers built from aligned (positive) and misaligned (neg-
ative) examples [32, 27]. Both the shape model (v = 58
landmarks) and MOSSE filters have been built with train-
ing images from the IMM [25] dataset (however the results
in this dataset use training images collected at our institu-
tion). The desired MOSSE correlation output (see [3]) was
set to be a 2D Gaussian centered at the each landmark with
3 pixels of standard deviation. Each filter hj has the size of
51 × 51 and it was used to scan a local region of 25 × 25
(i.e. size of the response maps in eq.3 - see figure 1). As de-
scribed in section 4, the number of particles N is typically

chosen as a trade-off between computational effort and esti-
mation accuracy. A total of 2000 particles (100 per parame-
ter) were used to estimate the shape parameters and 400 for
the pose parameters. Notice that we can speed up the en-
tire alignment procedure by rejecting particles whose shape
falls outside of the local landmark search regions. In the
experiments the robust norm ρ(.;σ) discards the 7% worst
scored landmarks (4 in a total of 58).

Our non-parametric Bayesian CLM approach, referred
as npBCLM, was evaluated against standard and state-of-
the-art global alignment solutions, in particular, the ASM
[8], CQF [32], BCLM [26], GMM [15] using 3 Gaus-
sians (GMM3), SCMS (ML) [27], SCMS (MAP) [28] and
DBASM-KDE [20]. The BCLM is a maximum a posteriori
version of CQF, likewise SCMS (ML) and SCMS (MAP)
represent a maximum likelihood and maximum a posteri-
ori versions of SCMS, respectively. DBASM-KDE is the
technique reviewed in section 3.4 where the KDE suffix
means that the local optimization is based on a KDE rep-
resentation of the response maps. A bandwidth schedule of
(15, 10, 5, 2) is used for the local KDE methods (which ap-
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Figure 4. Tracking performance evaluation of several fitting algorithms in the FGNET Talking Face [13] sequence. The values on legend
box are the mean and standard deviation RMS errors, respectively. The images on top show some fitting examples using our approach.

plies to SCMS and DBASM). Notice that our approach does
not require tuning a kernel bandwidth (eq.14). In all cases,
the initial shape parameters b0 start from zero, the pose pa-
rameters were initialized by a face detector [31] (whose lo-
cation appears as ’AVG’ method in the evaluation charts)
and the model was fitted until convergence up to a maxi-
mum of 20 iterations.

The Figure 3 shows the fitting performance curves for
all the evaluated methods on four different datasets. These
curves, that were widely adopted in [9, 10, 32, 28, 20], are
cumulative distribution functions that show the percentage
of faces that achieved a given error amount (shown at the
horizontal axis). Following common practice [9, 10], the
error metric is given by the mean error per landmark as frac-
tion of the inter-ocular distance, deyes, as

em(s) =
1

v deyes

v∑
i=1

‖si − sgt
i ‖ (16)

where sgt
i is the location of ith landmark in the shape ground

truth annotation. Note that, the available annotations are
different between datasets (and between our PDM model),
hence the error metric was only measured over the corre-
sponding landmarks. The table presented in the same figure
shows quantitative values taken from sampling the curves
setting a fixed error metric amount (em = 0.1, shown as
a vertical line in the graphics). Figure 3 also includes bar
charts with the (inter-ocular normalized) average errors on
the six most salient facial features (eyes and mouth corners).

The results show that the MAP based approaches per-
form better than theirs maximum likelihood (ML) coun-
terparts (BCLM vs CQF and SCMS-MAP vs SCMS-ML)
as the MAP update penalizes large deformations of the
shape model (it is a proper regularization) whereas ML just
makes unconstrained updates. The SCMS approaches, as

expected, achieve a high accuracy granted by the mean-shift
algorithm. The excellent performance of the regular ASM,
is mostly justified by the good performance of the local de-
tectors (MOSSE filters). The DBASM-KDE improves on
the results of the SCMS techniques, mainly because it fully
accounts for the uncertainty in the responses maps and it
uses an enhanced parameter update. Our proposed non-
parametric global optimization (npBASM) outperforms all
previous methods. The expectation of a KDE posterior rep-
resentation does in fact provide a more accurate PDM up-
date, that accounts with the multimodal distribution of the
response maps together with a robust alignment metric.

5.2. Tracking Performance

The figure 4 shows the tracking performance evaluation
in the FGNET Talking Face video sequence [13]. In this
evaluation, a Root Mean Square (RMS) error metric was
used. The relative performance between the global opti-
mization approaches is similar to the previous experiments,
where the npBCLM technique yields the best performance
(with the lowest RMS error mean and standard deviation).
Finally, the figure 5 shows examples of the qualitative eval-
uation of our npBCLM approach in the LFW [16] dataset.

6. Conclusions

This work presents a novel Bayesian global optimiza-
tion strategy that infers both the Point Distribution Model
(PDM) and the pose parameters, in a MAP sense, using a
non-parametric posterior distribution (Kernel Density Esti-
mator). The overall inference is done by a Regularized Par-
ticle Filter. Extensive evaluations were performed on sev-
eral standard datasets against state-of-the-art CLM methods
demonstrating a significant increase in performance.



Figure 5. Qualitative npBCLM fitting results taken from the Labeled Faces in the Wild (LFW) dataset [16].
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