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Abstract. A solution for simultaneous identity and expression recogni-
tion is proposed. The proposed solution starts by extracting face geom-
etry from input images using Active Appearance Models (AAM). Low
dimensional manifolds were then derived using Laplacian EigenMaps re-
sulting in two types of manifolds, one for model identity and the other
for expression. Respective multiclass Support Vector Machines (SVM)
were trained. The recognition is composed by a two step cascade, where
first the identity is predicted and then its associated expression model is
used to predict the facial expression. For evaluation proposes a database
was build consisting on 6770 images captured from 4 people exhibiting 7
different emotions. The identity overall recognition rate was 96.8%. Fa-
cial expression results are identity dependent, and the most expressive
individual achieves 76.8% of overall recognition rate.
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port Vector Machines, Identity and Expression Manifolds.

1 Introduction

Facial expression is one of the most powerful, natural and immediate means for
humans to share their emotions and intentions. Psychological studies focus on
the interpretation on this mean to interact and describe that there are six basic
emotions universally recognized [1], namely: joy, sadness, surprise, fear, anger
and disgust. An automatic, efficient and accurate facial expression extraction
system would thus be a powerfull tool assisting in these studies, allowing also
other kinds of applications such as Human Computer Interface (HCI), smart
interactive systems, video compression, etc. The proposed simultaneous identity
and facial expression recognition it is based on the idea that it is straightfor-
ward for a human to capture the emotion and consequently the identity of a
mimic actor our someone known using makeup. Humans can understand both
the identity/expression based only in facial motion. This guidance idea lead to
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face geometry used to recognize the identity and facial expression (focusing on
the six basic emotions plus the neutral one). Laplacian EigenMaps [2] are non-
linear dimension reduction techniques that derive a low dimensional manifold
lying in a higher dimensional more complex manifold. An identity/facial expres-
sion manifold is derived by embedding image data into a low dimensional space,
where a image sequence is then represented as a trajectory in the parameter
space. Learning a manifold of this nature require to derive a discriminative fa-
cial representation from raw images, in fact face images are represented by a set
of sparse 2D feature point and the identity/expression manifolds were learned in
a facial geometric feature space. The recognition has a feature extracting mech-
anism and a two stage cascade of multiclass Support Vector Machines (SVM)
[3] classifiers trained with low dimensional manifold data of face geometry. Dis-
criminative facial representation from raw images was achieved using Active
Appearance Models (AAM) [4] that is an effective way to locate facial features,
modeling both shape and texture from an observed training set, being able to
extract relevant face information without background interference. For an input
image, the AAM fitting framework extracts facial geometry related features, and
the first SVM stage predict the identity, on the second SVM stage it is loaded
the correspondent expression model for the predicted identity and the current
expression is also predicted.

2 Active Appearance Models

Active Appearance Models (AAM) [4] are generative nonlinear parametric mod-
els of shape and texture, commonly used to model faces. These adaptive tem-
plate matching methods, learn offline the variability of shape and texture, that
is captured from a representative training set, being able to fully describe with
photorealistic quality the trained faces as well as unseen.

2.1 Shape and Texture Models

The shape of an AAM is defined by the vertex locations of a 2D triangulated
mesh. Mathematically, the representation used for a single v-point shape is a
2v vector given by s = (x1, y1, . . . , xv, yv)T . The AAM training data consists
of a set of annotated images with the shape mesh marked (usually by hand).
The shapes are then aligned to a common mean shape using a Generalised Pro-
crustes Analysis (GPA), removing location, scale and rotation effects. Principal
Components Analysis (PCA) are then applied to the aligned shapes, resulting
on the parametric model

s = s0 +
n∑

i=1

pisi (1)

where a new shapes, s, are synthesised by deforming the mean shape, s0, using
a weighted linear combination of eigenvectors, si. n is the number of eigenvec-
tors that holds a user defined variance, typically 95%. pi is a vector of shape
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parameters which represents the weights. Building a texture model, requires
warping each training image so that the control points match those of the mean
shape, s0. The texture mapping is performed, using a piece wise affine warp, i.e.
partitioning the convex hull of the mean shape by a set of triangles using the
Delaunay triangulation. Each pixel inside a triangle is mapped into the corre-
spondent triangle in the mean shape using barycentric coordinates, see figure 1.
This procedure removes differences in texture due shape changes, establishing a

Fig. 1. On left the Original Image I, on right the Warped Image I(W(x;p))

common texture reference frame. A texture model can be obtained by applying
a low-memory PCA on the normalized textures. Defining pixel coordinates as
x = (x, y)T , the appearance of the AAM is an image, A(x), defined over the
pixels x ∈ s0 such as A(x) = A0(x) +

∑m
i=1 λiAi(x), x ∈ s0. The appearance

A(x) can be expressed as a base appearance A0(x) plus a linear combination of
m appearance images Ai(x) (EigenFaces). The coefficients λi are the appearance
parameters.

2.2 Model Fitting

Fitting an AAM is usually formulated [5] as minimizing the texture error, in the
least square sense, between the model instance A(x) and the input backwarped
image onto the base mesh I(W(x;p)),

∑
x∈s0

[
A0(x) +

m∑

i=1

λiAi(x)− I(W(x,p))

]2

. (2)

In eq. 2 the warp W is the piecewise affine warp from the base mesh s0 to the
current AAM shape s, see figure 1. Hence, W is a function of the shape pa-
rameters p. Notice that, the shape normalization on the model building process
(Procrustes Analysis) the AAM do not model similarity transformations to the
target image. Refer to [5] where is shown how to include it on the warp W(x;p).

The Simultaneous Inverse Compositional (SIC) [6] which minimize eq. 2
by performing a Gauss-Newtow gradient descent optimization simultaneously
on the warp parameters p and the appearance parameters λ with respect to
∆p and ∆λ, updating the warp by inverse composition: W(x;p) ←W(x;p) ◦
W(x;∆p)−1 and the appearance parameters additively: λ←λ+∆λ. Denoting,
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q =
(

p
λ

)
, i.e. q is an n+m dimensional vector containing the warp parameters

p and the appearance λ. The m+n Steepest Descent images [6] are of the form

SDSIC(x) =
(
∇A

∂W
∂p1

, · · · ,∇A
∂W
∂pn

, A1(x), · · · , Am(x)
)

(3)

where ∇A is defined as ∇A = ∇A0 +
∑m

i=1 λi∇Ai. The parameters update is
computed as

∆q = −H−1
SIC

∑
x∈s0

SDT
SIC(x)E(x), HSIC =

∑
x∈s0

SDT
SIC(x)SDSIC(x), (4)

where HSIC is the Gauss-Newtow approximation of the Hessian. The error
image,E(x), is defined as

E(x) = I(W(x;p))−
[
A0(x) +

m∑

i=1

λiAi(x)

]
. (5)

The Simultaneous Inverse Compositional when compared with other fitting ap-
proaches, such as the Project-Out [5] or the precomputed numerical estimate [4],
work rather slow, since the Steepest Descent images depend on the appearance
parameters and they have to re-computed in every iteration. By the other hand,
SIC achieves the better fitting performance which is desirable for our proposes.
Starting with a given estimate for the model, q0, and a rough estimate of the
location of the face (provided by AdaBoost [7] method), an AAM model can be
fitted with SIC following the algorithm 1. Figure 2 shows an example of AAM
fitting into a target image.

Algorithm 1 Simultaneous Inverse Compositional Image Alignment
1: Evaluate the gradients ∇A0 and ∇Ai for i = 1, · · · , m

2: Evaluate the Jacobian of the warp
∂W

∂p
at (x; 0)

3: while MaxIterations reached or |∆q| < ε do
4: Warp I with W(x;p) to compute I(W(x;p))
5: Compute the error image, E(x), using eq. 5
6: Compute the Steepest Descent images, SD(x), using eq. 3
7: Compute the Hessian matrix, H, eq. 4
8: Compute the parameters updates, ∆q, with eq. 4
9: Inverse Compose the Warp W(x;p)←W(x;p) ◦W(x; ∆p)−1

10: Update the appearance parameters λ←λ+∆λ
11: end while

3 Laplacian EigenMaps

Laplacian EigenMaps [2] are nonlinear dimension reduction techniques that de-
rive a low dimensional manifold lying in a higher dimensional more complex
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Fig. 2. AAM fitting.

manifold. The Laplacian EigenMaps builds a graph that incorporates neighbor-
hood information of the dataset and using the notion of the Laplacian of the
graph, computes a low dimensional representation that optimally preserves local
neighborhood information. Given k feature points x1, · · · ,xk ∈ <l,a weighted
graph with k nodes is build, one for each point, with a set of edges connecting
neighboring points. The embedding map is found by computing the eigenvec-
tors of the graph Laplacian [2]. See algorithm 2 where this method is described.
Finding such embedding map, Φ, requires tuning n nearest neighbors for graph
building and select the number of dimensions, m, where the input features were
projected into.

Algorithm 2 Laplacian EigenMaps
- Build the Adjacency Graph:
Nodes i and j (or j and i) are connected by an edge to the n nearest neighbors.
- Choosing the weights Wij : (if i and j are connected by an edge) then Wij = 1
- Build EigenMaps:
Compute eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf (6)

where Dii =
P

j Wji is a diagonal weight matrix and L = D −W is the Laplacian matrix. Let

f0, · · · , fk−1 be the solutions of eq. 6 order by eigenvalues λ0 = 0 ≤ λ1 ≤ · · · ≤ λk−1). Leaving
out the eigenvector f0 corresponding to eigenvalue 0, the embedding m-dimensional Euclidian
space is given by Φ = [f1|f2| · · · |fm].

4 Simultaneous Identity and Facial Expression
Recognition

The proposed solution models both identity and facial expression in indepen-
dent low dimensional manifolds. The system performs simultaneous identity and
facial expression recognition by building different manifolds that were derived
from embedding image data into a low dimensional subspace using Laplacian
EigenMaps [2]. In order to learn these manifolds it is necessary to derive dis-
criminative facial representation from raw images. This process it is done by the
AAM fitting framework, see figure 2, where face images are represented by a set
of sparse 2D feature point. As discriminatory features, insted of (x, y) feature
points, were used AAM related geometric features, i.e. regarding eq. 1 the shape
parameters, p, provide the same geometric information but using lower dimen-
sional features (n << 2v). All faces were normalized by selecting only shape
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parameters that model only deformation (ignoring the 4 similarity parameters,
refer to [5]). Both identity and expression manifolds were then learnt in a facial
geometric feature space. One image sequence from a test subject describing a
facial emotion is represented as a trajectory in the learnt manifold acquired from
the parameter space of the AAM. See figure 4. These manifolds were build using
Laplacian EigenMaps representations for the shape parameters (that are related
to face geometry). This approach maps the dimensionality of p into a less di-
mensional space where the mapped features acquire a huge discrimination power.
Two kinds of Laplacian EigenMaps were build. The first type of EigenMap (lets
call it identity manifold) finds the lower dimensional manifold using data from
all individuals, see figure 3. The second type, the expression manifold, uses data
only from a single individual, that maps data emphasising the differences in
individual facial motion of the different expressions, see figure 4. This system
holds an indentity manifold and expression manifold for each of the individuals
in the training set. For recognition proposes, several muticlass Support Vector
Machines (SVM) [3] classifiers were build, where the low dimensional identity
and expression manifolds, provide the training data in these models. Summa-
rizing, the simultaneous identity/expression recognition has a feature extracting
mechanism and a two stage cascade of SVM classifiers trained with embedded
manifold data. For an input image, the AAM fitting framework extracts the nor-
malized shape parameters, p, and the first SVM stage predict the identity for
these parameters. On the second SVM stage it is loaded the correspondent ex-
pression model for the predicted identity and the current expression is predicted
also.

5 Experimental Results

For the purpose of this work, a Facial Dynamics Database was built. It con-
sists of 4 individuals, in a frontal position, showing 7 different facial expressions,
namely: neutral expression, happiness, sadness, surprise, anger, fear and disgust.
All facial emotions were taken by starting and ending on the neutral expression.
Each individual repeated all facial emotions four times. The dataset is formed
by a total of 6770 images (640× 480). The AAM model was build using a total
of 28 images (7 images for each of the 4 person). Since the AAM will be used to
fit every frame of the captured database, it should held as much shape variation
possible. The training images were then composed by the most expressive images
of the 7 emotions (from a random repetition sequence). These training images
were hand annotated using 58 landmarks (v = 58). Training the model holding
95% of shape and appearance variance produces an AAM with 18 shape param-
eters, (n = 18), and 29 EigenFaces, (m = 29). All the 6770 frames of the Facial
Dynamics Database were then fitted using the AAM model, retrieving the shape
parameters, p, for each frame. Two main schemes were used for the manifold
building: setting data for identity and setting the data for the expressions of
each individual. A total of 5 manifolds were constructed (one model for identity
plus 4 for each person expressions). These Laplacian EigenMaps were build with
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both the number of adjacency graph neighbours, and the number of dimensions
where the input features were projected into, found by cross-validation. Figure
3 and 4 shows the manifolds produced for the identity and expressions respec-
tively. Five multiclass SVM models were trained (again 1 for identity + 4 for
expression). The multiclass SVM classication was achieved using one-against-all
voting scheme with a Gaussian Radial Basis Function (RBF). The kernel pa-
rameters and the missclassification penalty, were found also by cross-validation.
To evaluate the performance of the system the dataset was divided into 4 fold
for cross validation F1, F2, F3 and F4, that matches to the 4 repetitions of all
expressions that each subject was made. The results shown are confusion matri-
ces that were obtained from the cross-validation of the 4 folds ([test F1, train
F2,F3,F4]; [test F2, train F1,F3,F4;] ... ). Identity and expression models were
evaluated independently. Figure 3-left displays results for the identity recogni-
tion and table 1 shows results for the expression models for each person in the
dataset. Regarding figure 4 it is noticed that person 1 (figure 4-most-left) is the
most expressive. All facial emotions start and end from the neutral expression,
which explains the high concentration of projected points over the neutral clus-
ter. Experiments also shown that during the evolution of an emotion over time,
due noise and the effect of confusion bettween expressions, the ground truth
emotion is sometimes misclassified, i.e. the test point falls into other nearby
cluster. This problem could be reduced by including facial dynamics constraints.
Since our system only uses static based recognition, an improvement is expected
by changing the way expressions are validated, that will be regarded in a near
future work.
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Person1 Person2 Person3 Person4

Person1 98.11 0.09 1.79 0
Person2 1.32 98.67 0 0
Person3 2.93 0.29 94.50 2.27
Person4 1.29 0.13 2.32 96.25

Overall recognition rate = 96.88%

Fig. 3. Left - Identity manifold learnt with geometric AAM related features for 4
persons. Right - Confusion matrix for the identity manifold.

6 Conclusions

Simultaneous identity and expression recognition were achieved using a two stage
classifier using high discriminative, low dimensional, geometric based features.
Identity and expression of each individual were learn independently deriving a
low dimensional manifold using Laplacian EigenMaps. Face geometric data was
extracted using Active Appearance Models (AAM). For each image the AAM
fitting framework provide normalized geometric related features and derived an
identity manifold and expressions manifolds for each one of the individuals. Re-
spective multiclass Support Vector Machines (SVM) were trained providing a
two step classifier cascade where the first stage predicts identity. On second
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Fig. 4. Low dimensional manifolds learnt with geometric AAM related features for 4
persons exhibiting 7 expressions several turns each. Left-to-right figures represents the
expression models for person 1, 2 ,3 and 4 respectively.

Table 1. Expression model confusion matrices for each one of the individuals.

Person 1 Person 2

Neut Happ Sad Surp Ang Fear Disg Neut Happ Sad Surp Ang Fear Disg

Neut 69.85 9.16 2.29 0 0.76 1.14 16.79 Neut 67.78 0 6.37 0 0 25.83 0
Happ 0 84.58 3.33 10.41 1.66 0 0 Happ 1.14 78.70 0 17.11 0 3.04 0
Sad 0 0 100 0 0 0 0 Sad 1.73 0 86.85 5.53 0 0 5.88
Surp 0.66 0 0 99.33 0 0 0 Surp 0.76 25.95 0.76 41.60 0 26.71 4.19
Ang 2.3952 0 0.89 0.59 84.43 0.29 11.37 Ang 1.38 0 1.84 0 79.26 0.46 17.05
Fear 0 0.74 0 38.66 0 60.59 0 Fear 2.86 0 2.04 57.37 0 33.61 4.09
Disg 2.54 0 0 37.57 20.70 0 39.17 Disg 1.62 17.26 3.58 22.80 1.62 2.93 50.16

Overall recognition rate = 76.85% Overall recognition rate = 62.56%
Person 3 Person 4

Neut Happ Sad Surp Ang Fear Disg Neut Happ Sad Surp Ang Fear Disg

Neut 43.71 0 20.10 25.62 0 10.55 0 Neut 52.50 17.50 0 18.00 0 0 12.00
Happ 3.89 80.52 0.43 6.49 0 3.89 4.76 Happ 4.67 90.19 0 3.73 0 1.14 0
Sad 8.29 0 72.48 0 10.48 2.62 6.11 Sad 2.01 12.56 42.71 0 0 0 42.71
Surp 5.31 6.91 0 65.95 0 21.80 0 Surp 1.86 2.80 0 56.54 0 32.71 6.07
Ang 4.28 0.47 25.71 0 61.90 0.95 6.66 Ang 2.19 0 0 0 55.70 0 42.10
Fear 21.25 23.12 0 18.75 0 23.13 13.75 Fear 1.43 3.34 0 16.26 0 75.60 3.34
Disg 10.13 2.02 37.16 10.81 5.40 2.02 32.43 Disg 0.49 6.46 0 0 0.99 0 92.03

Overall recognition rate = 54.30% Overall recognition rate = 66.47%

the expression model for the predicted identity is loaded and the expression
is also predicted. For evaluation proposes an database was build having 6770
images captured from 4 people exhibiting 7 different emotions. Our 4 fold cross-
validation results show that the system is able to recognize an overall 96.8%
in the identity. The facial expression is very depend for each individual. In our
dataset the most expressive individual achieves an overall recognition rate of
76.8% and the less expressive 54.3%.
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