

Monocular Head Pose Estimation

Pedro Martins, Jorge Batista

Institute for Systems and Robotics

http://www.isr.uc.pt

Department of Electrical Engineering and Computers
University of Coimbra
Portugal

Introduction

- Single View 6DOF Pose Estimation
 - Human Computer Interface (HCI)
 - Face Recognition Systems
 - Knowledge about gaze direction
 - Video Compression

Agenda

Active Appearance Models(AAM)

- Shape, Texture and Combined Models
- Model Training
- Model Fitting
- Monocular Pose Estimation

- Pose from Orthography and Scaling with ITerations (POSIT)
- Anthropometric 3D Model
- Pose Evaluation

Augmented Reality

Face Model

A set of input parameters generate a face image output

Active Appearance Models

- Active Appearance Models (AAM) is a statistical based template matching method, where the variability of shape and texture is captured from a representative training set.
- Able to extract relevant face information without background interference
- Describes facial characteristics in a reduced model

Shape Model

- Shape is defined as a Set of Landmarks Points
 - Invariant over Euclidian
 Similarity transformations
 - No landmark connectivity information is given

$$x = (x_1, y_1, x_2, y_2, ..., x_n, y_n)^T$$

58 Landmark Points Used

Shape Model - Generalized Procrustes Analysis

Remove location, scale and rotation effects

Raw Data

Aligned Data

Shape Model

Applying a PCA

$$x = \overline{x} + \Phi_s b_s$$

- x is the sysnthesized shape
- \bar{x} is the mean shape
- Фs contains the highest covariance shape eigenvectors
- bs is a vector of shape parameters representing the weights

Texture Model

For m pixels sampled, the texture is represented by:

$$g = (g_1, g_2, ..., g_{m-1}, g_m)^T$$

Required warping each image to a common reference frame

- Delaunay Triangulation
- Each pixel is mapped by barycentric coordinates

Hardware Assisted Texture

- Modern graphics cards provide hardware based solutions
- Texture mapping using OpenGL API
- Delaunay Triangles
- Orthographic Projection Model
- Load warped image from the FrameBuffer

	MatLab	C/C++	OpenGL
Time	2.7 s	200 ms	5 ms

Texture Mapping Video

Texture Mapping Examples

Photometric Normalization

Histogram Equalization in each of the 3 Color Channels

Texture Model

Applying a LowMemory PCA

$$g = \overline{g} + \Phi_g b_g$$

- g is the sysnthesized texture
- g is the mean texture
- Dg contains the highest covariance texture eigenvectors
- bg is a vector of texture parameters representing the weights

Combined Shape + Texture Model

To remove correlations between bs and bg a third PCA is performed

$$b = \left(\frac{W_s b_s}{b_g}\right) = \left(\frac{W_s \Phi_s^T (x - \overline{x})}{\Phi_g^T (g - \overline{g})}\right)$$

Uniformly weight with ratio r

$$W_{s} = rI \qquad r = \frac{\sum_{i} \lambda_{gi}}{\sum_{i} \lambda_{sj}}$$

Combined model

$$b = \Phi_c c$$

Shape:

$$x = x + \Phi_s W^{-1} \Phi_{cs} c$$

$$g = g + \Phi_g \Phi_{cg} c$$

$$g = \overline{g} + \Phi_g \Phi_{cg} c$$

$$\Phi_c = \begin{pmatrix} \Phi_{cs} \\ \Phi_{cg} \\ \vdots \end{pmatrix}$$

AAM Instance Examples

AAM Model Training

- Optimization Problem
 - Mimimize texture difference between mode and the beneath part of the target image that it covers

 $\delta g = r(p)$

- Include pose parameters $t = [S_x \ S_y \ T_x \ T_y], S_x = s \cos(\theta) 1, S_y = s \sin(\theta)$
- Full parameters $p = \begin{bmatrix} c^T & t^T \end{bmatrix}$
- Learning the correlations between AAM model instances and texture residuals

Find the optimal predition matrix

$$\delta p = R\delta g$$

$$\Delta p = \begin{bmatrix} \vdots & & \vdots \\ \delta p_1 & \cdots & \delta p_s \\ \vdots & & \vdots \end{bmatrix}_{t_p \times s} \quad \Delta g = \begin{bmatrix} \vdots & & \vdots \\ \delta g_1 & \cdots & \delta g_s \\ \vdots & & \vdots \end{bmatrix}_{m \times s}$$

$$\Delta p = R\Delta g$$

AAM Model Training(2)

Parameter p	Perturbation		
С	±0.25σ, ±0.5σ		
Scale	90%, 110%		
θ	±5, ±10 deg		
Tx. Tv	±5%, ±10%		

- Residual $r(p) = g_{image} g_{model}$
- Minimize $|r(p)|^2$
- Expanding in Taylor Series

$$r(p + \delta p) \approx r(p) + J\delta p$$

• So $|r(p+\delta p)|^2$ leads to

$$\delta p = -(J^T J)^{-1} J^T r$$

$$J = \frac{\delta r(p)}{\delta p} = \begin{bmatrix} \frac{\delta r_1}{\delta p_1} & \frac{\delta r_1}{\delta p_{t_p}} \\ \vdots & \cdots & \vdots \\ \frac{\delta r_m}{\delta p_1} & \frac{\delta r_m}{\delta p_{t_p}} \end{bmatrix}_{m \times t_p}$$

$$J = \frac{\delta r}{\delta p} = \Delta g . \Delta p^{-1}$$

Parameters Displacements

AAM Model Fitting

AdaBoost Initial Location Estimate

Damped Gauss-Newton Steepest Descend method

Sample Image

 $(x,y) \otimes g_{image}$

Until No Improvem ent is made to the error

Build AAM Instance

$$AAM(p)$$
 \otimes $(x_{model}, y_{model}, g_{model})$

Compute Texture Residual

$$\partial g = g_{image} - g_{model}$$

Update Model Displacements

$$p_{k+1} = p_k + \alpha (J^T J)^{-1} J^T \delta g$$

Sampled Instace

Current AAM Instance

Current (x,y) Control Points

IMM Database AAM Fitting

AAM Model Fitting

AAM Model Fitting Failure

Monocular Head Pose Estimation

- Single View Head Pose Estimation
- POSIT Pose from
 Orthography and Scaling
 with ITerations
- Rigid 3D Face Surface
 Model

POSIT - Pose from Orthography and Scaling with ITerations

Perspective Projection Model

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Using normalized image coordinates

$$r_1 = \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix}, r_2 = \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix}, r_3 = \begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} r_1^T & T_x \\ r_2^T & T_y \\ r_3^T & T_z \end{bmatrix} \begin{bmatrix} Y \\ Y \\ Z \\ 1 \end{bmatrix}$$

POSIT - Pose from Orthography and Scaling with

Iterations(2)

Dividing all elements by Tz

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} r_1^T / T_z & T_x / T_z \\ r_2^T / T_z & T_y / T_z \\ r_3^T / T_z & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$w_i = 1 + 1$$

$$w_i = 1 + \frac{r_3}{T_z}(X_i, Y_i, Z_i)$$

Applying the transpose on the remaining eqs

$$\begin{bmatrix} u & v \end{bmatrix} = \begin{bmatrix} X & Y & Z & 1 \end{bmatrix} \begin{bmatrix} r_1/T_z & r_2/T_z \\ T_x/T_z & T_y/T_z \end{bmatrix}$$

Extending for n points

$$\begin{bmatrix} u_{1} & v_{1} \\ u_{2} & v_{2} \\ \vdots & \vdots \\ u_{n-1} & v_{n-1} \\ u_{n} & v_{n} \end{bmatrix} = \begin{bmatrix} X_{1} & Y_{1} & Z_{1} & 1 \\ X_{2} & Y_{2} & Z_{2} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ X_{n-1} & Y_{n-1} & Z_{n-1} & 1 \\ X_{n} & Y_{n} & Z_{n} & 1 \end{bmatrix} \begin{bmatrix} r_{1}/T_{z} & r_{2}/T_{z} \\ T_{x}/T_{z} & T_{y}/T_{z} \end{bmatrix}$$

Until Pose

$$\begin{bmatrix} r_1 / T_z & r_2 / T_z \\ T_x / T_z & T_y / T_z \end{bmatrix}$$

POSIT Algorithm

Normalize Image Coordinates $u_i = u_i - \frac{c_x}{f}, v_i = v_i - \frac{c_y}{f}$ Compute Model inverse M^{-1}

Assume $w_i = 1$

Get Scaled Orthographic coordinates $(u_i, v_i) = w_i(u_i, v_i)$

Compute
$$\begin{bmatrix} r_1/T_z & r_2/T_z \\ T_x/T_z & T_y/T_z \end{bmatrix} = M^{-1} \begin{bmatrix} u_1 & v_1 \\ \vdots & \vdots \\ u_n & v_n \end{bmatrix}$$

Find Tz, Tx, Ty, r1 and r2

Compute **r3** by the cross product $r_3 = r_1 \times r_2$

Update
$$w_i = 1 + \frac{r_3}{T_z}(X_i, Y_i, Z_i)$$

3D Anthropometric Model

One-to-One 2D/3D Correspondences

Physical Anthropometric Model

3D laser scan data

Sparse 3D model (OpenGL)

Head Pose Estimation - Demo

Pose Evaluation — Pose From a Plane

 Knowing the camera matrix, K, the Homography holds,

$$H = K[R_1 \mid R_2 \mid T]$$

- R1, R2 first 2 columns of rotation matrix R
- T translation vector
- The full pose can be retrieved using the following normalization

The vectors **c**, **p** and **d** are defined as

$$c = R_1 + R_2 p = R_1 \times R_2 d = c \times p$$

$$R_1' = \frac{1}{\sqrt{2}} \left(\frac{c}{|c|} + \frac{d}{|d|} \frac{1}{\dot{J}} R_2' = \frac{1}{\sqrt{2}} \left(\frac{c}{|c|} - \frac{d}{|d|} \frac{1}{\dot{J}} R_3' = R_1' \times R_2' \right)$$

$$R = [R_1' | R_2' | R_3']$$

Compute $W = K^{-1}H$

$$R_1 = \frac{W_1}{l} \quad R_2 = \frac{W_2}{l} \quad T = \frac{W_3}{l}$$

$$l = \sqrt{|W_1||W_2|}$$

Pose Estimation Evaluation - Demo

Pose Estimation Evaluation

AAM+POSIT Head
 Pose Compared with
 a planar checkboard
 pose

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
Parameters	Avg std	
Roll	1.94 deg	
Pitch	2.57 deg	
Yaw	1.7 deg	
Distance	1.33cm	

Correlations between Pitch and Yaw angles

3D Glasses Augmentation

 Augmented Reality (AR) is the overlay of artificial computer graphics images on the physical world

3D Glasses drawn with Respect to the Head Model

3D anthropometric model overlaid

3D Glasses Augmentation - Demo

Final Notes

- Single View Solution to estimate the 6DOF Head Pose
- Combines AAM Features Extracting + POSIT Pose Estimation
- Easy 2D/3D image registration
- Average std errors in about 2 degree in orientation and 1
 cm in position

Advantages

- Rigid 3D Head Model
- Identity Differences
- Facial Expression Influence

Weeknesses