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ABSTRACT

A solution for Discriminative Active Appearance Models is pro-
posed. The model consists in a set of descriptors which are co-
variances of multiple features evaluated over the neighborhood of
the landmarks whose locations are governed by a Point Distribu-
tion Model (PDM). The covariance matrices are a special set of ten-
sors that lie on a Riemannian manifold, which make it possible to
measure the dissimilarity and to update them, imposing the tempo-
ral appearance consistency. The discriminative fitting method pro-
duce patch response maps found by convolution around the current
landmark position. Since the minimum of the responce map isn’t
always the correct solution due to detection ambiguities, our method
finds candidates to solutions based on a mean-shift algorithm, fol-
lowed by an unsupervised clustering technique used to locate and
group the candidates. A mahalanobis based metric is used to select
the best solution that is consistent with the PDM. Finally the global
PDM optimization step is performed using a weighted least-squares
warp update, based on the Lucas Kanade framework. The weights
were extracted from a landmark matching score statistics. The ef-
fectiveness of the proposed approach was evaluated on unseen data
on the challenging Talking Face video sequence, demonstrating the
improvement in performance.

Index Terms— Point Distribution Model, Discriminative Ac-
tive Appearance Models, Riemannian Manifolds.

1. INTRODUCTION

Facial image alignment is the key aspect in many computer vision
applications, such as tracking and recognition. In the past years,
most existing methods have used generative based methods, where
the shape and texture variation were learned from training images.
The Active Appearance Models (AAM)[1] is one of the most effec-
tive techniques with respect to fitting accuracy and efficiency. Al-
though, it consists on generative holistic representations (in sense
that all pixels belonging to the object are used). This representa-
tion generalization performs poorly when the target exhibits large
amounts of variability, such as the case of the human face under vari-
ations of identity, expression, pose, lighting or non-rigid motion due
to the huge dimensional representation of the appearance. The main
drawback with the generative approaches is that typically they only
work well for the individuals held in the training dataset due to the
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fact that the appearance is eigen based and captured by a linear Prin-
cipal Components Analysis (PCA). Recently, methods such as the
Constrained Local Model (CLM)[2] or [3] [4] have been proposed.
These methods use a set of discriminative template regions surround-
ing individual landmarks whose locations are governed by a Point
Distribution Model (PDM). The CLM uses as response surfaces the
normalized correlation. In [3] [4] the discriminant descriptor is ob-
tained using machine learning methods, i.e. a linear SVM, which
require a extensive training, labeling lots of positive and negative
samples. Our approach fits on the discriminative class of methods
using shape and appearance models. The shape model is an ordinary
PDM that deals with the position of the landmarks. The appearance
is composed by a set of descriptors for each of the landmarks in the
PDM. The descriptors are covariance matrices of multiple features
evaluated on the surrounding location of the landmarks. Since the
covariance matrices are a special set of tensors that lie on a Rieman-
nian manifold, it is possible to measure the dissimilarity between
two covariances, and also to update them, imposing the temporal ap-
pearance consistency. The method starts using a generic covariance
(the average covariance observed in the training set) which is then
continuously updated. Although, the patch response maps found
by convolution around the current landmark position suffers from
detection ambiguities. It will be shown that the minimum (in co-
variance dissimilarity) of the responce map isn’t always the desired
solution. A solution based on a mean-shift algorithm is proposed,
finding candidates to solutions, followed by an unsupervised clus-
tering technique[5] locating and grouping the candidates. A maha-
lanobis based metric is used to select the best solution. Finally the
global optimization step is performed using a weighted least-squares
warp update based on the Lucas Kanade framework[6]. The weights
were extracted from landmark matching score statistics. This pa-
per is organized as follows: section 2 describes the background re-
quired, namely the basics on Riemannian Manifolds and PDM build-
ing. Section 3 presents the approach in detail and section 4 and 5 are
devoted to experimental results and conclusions, respectively.

2. BACKGROUND

2.1. Shape Model

The shape of a (2D) Point Distribution Model (PDM) is defined by
the vertex locations of a mesh. The representation used for a single
v-point shape is a 2v vector given by s = (x1, . . . , xv, y1, . . . , yv)T .
The PDM training data consists of a set of annotated images with
the shape mesh marked (usually by hand). All the shapes are then
aligned to a common mean shape using a Generalized Procrustes
Analysis (GPA), removing location, scale and rotation effects. Prin-
cipal Components Analysis (PCA) are then applied to the aligned



shapes, resulting on the linear parametric model s = s0 +Φp, where
new shapes, s, are synthesized by deforming the mean shape, s0, us-
ing a weighted linear combination of eigenvectors, φi, i = 1, . . . , n.
n is the number of eigenvectors that holds a user defined variance,
typically 95%. p is a vector of shape parameters which represents
the weights. See figure 1-a)b)c). Notice that the GPA makes that

(a) (b) (c) (d) (e)

Fig. 1. a) Shape raw data. b) Aligned landmarks after GPA. c) Shape
covariance Σk around each landmark. d) Patches Pk, l × l around
each landmark. e) Illustration of finding the average covariance Ck
for a specific patch (left side of left eye corner). Each training image
provide a normalized patch. The covariances for the feature vector f
are evaluated and using eq.2, Ck is found.

the PDM do not model the similarity transformation which is re-
quired onto the target image. To overcome this we use the approach
proposed by [1], i.e., we include a special set of 4 eigenvectors
ψ1, . . . , φ4. A full shape is then described by a linear system s =
s0 +

Pn
i=1 piφi +

P4
j=1 qjψj where q represents the 2D pose pa-

rameters with q1 = s cos(θ) − 1, q2 = s sin(θ), q3 = tx, q4 = ty
where s, θ, (tx, ty) represents the scale, rotation and translation w.r.t.
the base mesh s0.

2.2. Texture Model - Covariance of Features

The discriminative appearance model used is based on a descrip-
tor of the texture around each one of the v landmarks. Inspired
on the work of [7], a quadrangular region P (patch) with size l is
sampled around each landmark. See figure 1-d. On each of the re-
gions, Pk, k = 1, . . . , v, several features f are extracted for each
pixel x = (x, y)T ,∈ Pk where f = [x y Ix Iy

p
I2
x + I2

y

arctan
“
Iy
Ix

”
Ixx + Iyy]. The features used are the pixel posi-

tion (x, y), horizontal and vertical gradients (Ix, Iy), gradient mag-
nitude, gradient phase, and the Laplacian. The main advantages
of our formulation is that it can always allow more features in or-
der to find a better descriptor for Pk without changing the remain-
ing formulation. Stacking all measures of f, i.e. Fk = f ∈ Pk,
the d × d covariance matrix for the features is given by Ck =

1
l2−1

Pl2

i=1(Fki − µPk )(Fki − µPk )T where µPk is the vector of
feature means within the region Pk. The covariance Ck is used as
region descriptor (which represents the correlations between the fea-
tures f for the entire region Pk). The main advantage of using covari-
ances of features is that, if they are positive definite matrices, Ck lie
in a Riemannian Manifold and is possible to measure dissimilarities
and make updates.

2.2.1. Dissimilarity Between Covariances

The covariance matrices do not lie on Euclidean space. Based on the
Riemannian invariants, a distance metric[8] is used. The dissimilar-
ity between two covariances matrices C1 and C2 is given by

ρ(C1,C2) =

vuut mX
i=1

ln2λi(C1,C2) (1)

where λi(C1,C2)i=1,...,m are the generalized eigenvalues of C1 and
C2, computed from λiC1xi − C2xi = 0, i = 1, ..., d and xi 6= 0
are the generalized eigenvectors. Note that ρ(C1,C2) ≥ 0.

2.2.2. Updating Covariances - Finding Ck

The mean of the points on the manifold minimizes the L2 norm of
C = arg min

PT
t=1 ρ

2(C,Ct). [8] proposed a gradient descent ap-

proach to compute the C by Ci+1
= expCi

“
1
T

PT
t=1 logCi(Ct)

”
.

To prevent the model from contamination, it is possible to weight
the data points by a factor proportional to its similarity to the current
model, resulting

Ci+1
= expCi

 
1

ρ∗

TX
t=1

ρ−1(Ct,C
∗
) logCi(Ct)

!
(2)

where ρ is defined in eq.1, ρ∗ =
PT
t=1 ρ

−1(Ct,C
∗
) and C∗ is the

model computed at the T previous frames. Each training image pro-
vide a set of v covariances matrices, Ck (for each landmark k). For
N images in the set, the average covariance matrix, Ck, is computed
over the Riemannian Manifold using eq.2. See figure 1-e for a graph-
ical interpretation of this process. The mean covariance, Ck, is used
as the initial descriptor for that specific landmark k.

2.3. Image Normalization - Affine Warp

Since the covariance isn’t invariant to scale and rotation effects, a
normalization at image level is required. The normalization is based
on an affine warp of the entire image in a way that the current mesh
s is mapped into the reference base mesh s0.

3. OUR APPROACH - DAAM-R

After building the PDM and evaluating the average covariance Ck
for each landmark k (in a training stage), fitting the Discriminative
AAM embedded on a Riemannian Manifold (DAAM-R) consists on
finding k local optimal displacements, ∆x†, from the PDM current
mesh position s. The local updates, expressed in the base mesh, will
be constrained to lie in the subspace spanned by Φ by an nonlinear
optimization based on the Lucas Kanade framework[6]. (See section
3.1). The goal is to find the deviation from the PDM, ∆x, for each
landmark. The sequencial steps of proposed approach are enumer-
ated and figure 2 shows the overall view for the fitting methodology.

(1) Scanning by convolution around a local region finding a re-
sponse map of covariances dissimilarities (figure 2-a).

(2) The minimum of the responce map, i.e. the lower dissim-
ilarity, doesn’t always correspond to the correct landmark location.
Actually, in some cases it can be a poor estimate, since the features
consists of small image patches that often contain limited structure,
leading to detection ambiguities. Since the global minimum couldn’t
be always the correct solution it is however assumed that the correct
solution is a local minima. A modified version of a mean-shift algo-
rithm (section 3.2) is used to detect all the local minima (see figure
2-b) providing a set of candidates to the landmark solution.

(3) The mean-shift will produce clusters with the candidates re-
gions to solutions, ∆x∗k. At this stage is important to define the
number and location of these clusters. For this propose an unsuper-
vised clustering method proposed by [5] it used. See figure 2-c and
section 3.3.

(4) Knowing the clusters and their locations, it is required to
select the best cluster, ∆x†k, (section 3.4). The selection is based on
the cluster that will be more consistent with the PDM (figure 2-d).



(5) Finally, establish the landmark matching score assigning
weights to the found solution (section 3.5) and performing global
PDM optimization (section 3.1).
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Fig. 2. Overview of the DAAM-R. The left main figure represents
the first iteration of the method. Starting with an initial estimate of
the position of the face (by AdaBoost[Viola-Jones]). a) Response
maps of covariance of features dissimilarity around each xk (blue
small dissimilarity). b) 3D mesh for the response maps. At the
ground level with red color is represented the mean-shift seeds start-
ing grid. The green circles are the seeds final position (local min-
ima). c) Unsupervised clustering to find the clusters and their loca-
tions. The red cross at the center represents the current landmark
position xk. The small green circles are the mean-shift seeds at a
near local minima location and the ellipses are the clusters found. d)
Representation for Σk. e) Detailed matching solutions. The green
dots are the centroid locations, x∗ki

, and the selected solution x†k is
the one pointed by the green arrow.

3.1. Global Optimization - Fitting the PDM

The PDM fitting is accomplish using the Lucas Kanade framework[6].
The warp function is given by W(x, p, q) = s0 + Φp + Ψq, where
p is the shape parameters and q the similarity parameters. The Jaco-
bian of the warp is given by ∂W(x,p,q)

∂p = ΦT and ∂W(x,p,q)
∂q = ΨT .

The non-rigid alignment can be posed into the following optimiza-
tion problem

arg min
p,q

vX
k=1

ρ(Ck{s0 + Φp + Ψq}),C∗k) (3)

minimizing the covariance dissimilarity ρ(.) between the model co-
variance, C∗k, and the covariance computed on a shifted location, but
constrained to be consisted with the PDM, Ck{s0 + Φp + Ψq}, for
all the v patches in the model. The model covariance, C∗k, starts
by being the average Ck on the Manifold. It is computed from the
training images and is weighted updated every frame enforcing the
temporal appearance consistency using the approach described in
section 2.2.2. A T sized buffer is used to evaluate C∗k. This up-
date process is only done after the PDM fitting of the target frame.
For solving the cost function (eq.3), a weighted least-squares op-
timization is used. It requires finding v local translations by ex-
haustively search the region around each patch such that ∆x†k =

arg min∆xk ρ(Ck{xk + ∆xk}),C
∗
k) where ∆x†k is the optimal, in

some sense, local displacement for the patch k. The evaluation of
∆x†k is described on the following subsections. The weighted least-

squares warp update is given by

∆p =

„
∂W(x, p, q)

∂p
W
∂W(x, p, q)

∂p

T«−1
∂W(x, p, q)

∂p
W∆x†

(4)
whereW is a 2v×2v diagonal matrix of weights,W = diag(w1, ...,
wv, w1, ..., wv). Each wk weight measures the fitting importance
for landmark k. See section 3.5 for details on how to estimate the
weights. The parameters update equation for ∆q is similar to eq.4
but insted of using ∂W(x,p,q)

∂p it uses ∂W(x,p,q)
∂q . For this particular

case, the Jacobian of the warp is constant and the forward additive
update method[6] can be used. Solving the PDM consists on iter-
atively use eq.4 and update the parameters by p ← p + ∆p and
q ← q + ∆q until ‖∆p‖ ≤ ε, or a maximum number of iterations
is reached. Note that the image normalization process, described
earlier in section 2.3, is performed at each iteration.

3.2. Weighted Mean-Shift - Find Candidates

Mean-shift algorithm is a robust clustering technique which does
not require prior knowledge on the number of clusters[9]. The
weighted mean shift vector at point x is defined as mh(x) =Pm

i=1 wixig

„‚‚‚ x−xi
h

‚‚‚2«Pm
i=1 wig

„‚‚‚ x−xi
h

‚‚‚2« where g(s) = −k′(s), with k(s) being

the kernel profile (it is used k(s) = e−
s
2 ) and the h bandwidth.

wi is the normalized weight assigned to each data point xi. The
algorithm starts at the data points and at each iteration t moves
in the direction of the mean shift vector xt+1 = xt + mh(xt).
The mean-shift vector always points toward the direction of the
maximum increase in the density. If weights are assigned as
wi,i=1,...,m = ρ−1(Ck{xk + ∆xk},C

∗
k), where m is the num-

ber of seeds (i.e. equal to the inverse of the dissimilarity of the
response maps), the seeds will move into the local minima. Note
that the weights, wi, should be normalized such that

Pm
i=1 wi = 1.

The selection of the number and the starting position of the seeds is
very important. A sparse grid of 3× 3 blocks is used, where a single
seed is assigned to the position inside the block that has the higher
weight. The number of seeds used, m, will be the number of 3 × 3
blocks inside the grid of the scanned areas.

3.3. Finding Clusters

The mean-shift will provide candidates to solutions. Searching for
those candidates is a clustering problem. For this propose the unsu-
pervised clustering method proposed by [5] was used. Usually the
mean-shift seeds converge around a few locations, forming clusters
where the seeds are not positioned at the exact same place. The clus-
tering also filters this effect by taking the centroid position as the
candidate solution.

3.4. Selecting the Best Cluster

Knowing the clusters and their centroid locations it is required to se-
lect the best cluster. The selection is based on the cluster that is more
consistent with the PDM. Recalling figure 1-c, the individual shape
localization covariance, Σk, was estimated. The selected cluster is
the one that has the lower mahalanobis distance w.r.t. the correspon-
dent PDM landmark. Formally, the centroid locations x∗ki

are given
by x∗ki

= xk + ∆x∗ki
with i = 1, . . . , c, and c the number of cen-

troids found. The deviation update found for each cluster is ∆x∗ki
.

The selected candidate for the solution, x†k, is the one that has the



lower mahalanobis distance, i.e. is more close to the PDM distri-
bution x†k = arg min dm(x∗ki

,Σk), where dm(.) is the mahalanobis
distance that is evaluated for all x∗ki

, and Σk is the shape position
covariance of the landmark k.

3.5. Landmark Matching Score

The PDM optimization is based on a weighted least-square warp
update, dealing with some possible landmarks mismatches. From
eq.4 this information is included as a diagonal matrix of weights and
those weights are based on landmark confidences. The statistics for
the landmarks covariance of features matching score can be learnt
previously from the training images. The residual error on matching,
Ck, follows a half normal which is approximated by a normal distri-
bution with zero mean and a given standard deviation∼ N (0, σCk

).
The error standard deviation σCk

can be estimated from the training

set as σCk
=

qPN
i=1 ρ(Ci,Ck)2

N−1
, where N is the total number of im-

ages. Knowing σCk
and defining C†k to be the covariance of features

evaluated at the solution x†k, the weights for the matrix W can be

assigned as wk = exp

„
− ρ(C†

k
,C∗k)2

2σCk

«
.

4. EXPERIMENTAL RESULTS

The experimental results were conducted using two free available in-
dependent datasets. The IMM dataset1 annotated with v = 58 land-
marks, see figure 1-a and the FGNet Talking Face sequence (TF)2.
The main experience consists on training the DAAM-R with about
160 near frontal images from the IMM set and test the ability of
fitting in unseen images, comparing it with other fitting algorithms
trained with the same input data. The DAAM-R training consists in
building the PDM, compute the average covariance of features for
each landmark, Ck, and find the matching statistics σCk

using only
the images from the IMM set. The fitting accuracy is evaluated using
the initial 1000 frames of the TF sequence. Our method (DAAM-R)
is compared with the standard AAM algorithms: the Project Out
(PO)[1], the Simultaneous Inverse Compositional (SIC) and the SIC
Efficient Approximation (SIC-EA)[6]. The method is also tested
against the robust extensions: Roboust Normalization Inverse Com-
positional (RNIC)[6] and the Roboust SIC (RSIC)[6]. Regarding
the remaining details about the DAAM-R, the sampled patches Pk
have the size of 11 × 11, (l = 11), (intraocular distance of about
80 pixels). Durring the fitting process the search area is a window of
21 × 21 pixels around each landmark. For the mean-shift, the sys-
tem works well with a bandwidth of h = 8, ε = 0.01, and maximum
number of iterations 50. The number of seeds used were m = 49.
The unsupervised clustering requires the minimal and maximal num-
ber of clusters to find, 1 and 5 respectively. The model covariance
buffer is T = 30, which means that that for every landmark the C∗k
is computed from 30 previous weighted samples. The termination
criteria in DAAM-R was set to ε = 0.75 and the maximum itera-
tions was set to 10. For the other algorithms ε = 0.75 and maximum
iterations of 20. The robust algorithms also require the choose of a
error norm, the Talwar function is used (gives a weight of 1 to inliers
and 0 to outliers), where the scale parameter is estimated from the
error image assuming that there exists 15% of outliers. The figure 3
shows the RMS fitting error in the TF sequence for all the evaluated
methods. Since the IMM uses a 58 landmark scheme and the TF uses

1www2.imm.dtu.dk/ aam
2www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html

68, the error was only measured over the correspondent landmarks.
The colored circles over the graphic represent reinitializations of the
models. Note that our approach, DAAM-R, never make a restart.
The results show that the method is generally very accurate.

Fig. 3. RMS error in fitting the first 1000 frames of the TF sequence.

5. CONCLUSIONS

The DAAM-R uses independent shape and texture models. The tex-
ture is composed by a set descriptors for the landmarks. These de-
scriptors are covariances of multiple features evaluated around the
landmark locations which are governed by a PDM. The covariance
matrices lie on a Riemannian manifold, which make possible to mea-
sure the dissimilarity and to update them, imposing the temporal ap-
pearance consistency. Using a discriminative fitting approach, re-
sponse maps are found. Since the minimum of the responce map
isn’t always the correct solution a strategy based on mean-shift is
used to find candidates to solutions (local minima). An unsupervised
clustering technique is used to locate and group the candidates and
a mahalanobis based metric is used to select the best solution con-
sistent with the PDM. The global optimization for the PDM is per-
formed using a weighted least-squares warp update, where weights
were extracted from the landmark matching confidences statistics.
The DAAM-R trained with mostly frontal images taken from the
IMM dataset is evaluated by fitting to unseen data on the challeng-
ing Talking Face video sequence (1000 frames). The model performs
well without lose track during all the sequence.
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