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ABSTRACT

This paper targets deformable face model matching in images using
cascaded regression techniques. Recently, the cascaded regression
strategies have became rather popular solutions to solve nonlinear
objective functions by learning a pipeline sequence of linear regres-
sors. However, despite their success, the standard formulation do
not enforce shape consistency through the cascade (mostly because
the individual regressors are learnt independently). In this paper we
revisit the cascaded regression framework and propose a number of
improvements. First we explore the simplicity and compactness of
using a linear shape model for such tasks, effectively solving the
previous drawback. Then we propose to extend the linear regres-
sion module into a nonlinear version, by means of recent Convolu-
tional Neutral Networks (CNNs) techniques, modified to include a
weighted shape aware loss function. Moreover, since CNNs often
require massive amounts of data to perform well, we took advantage
of the shape model probabilistic framework to efficiently bootstrap
new data. Our nonlinear cascade regression method is evaluated in
several databases (LFPW, LFW, HELEN and 300W), where the re-
sults demonstrate the effectiveness of the proposed method.

Index Terms— Non-rigid face registration, face alignment, de-
formable models, facial feature localization, cascaded regression.

1. INTRODUCTION

Nonrigid face registration, commonly known as face alignment, is
the computer vision task that aims to locate a set of semantic facial
features (landmarks) such as eyes, nose, mouth, etc. Such task is
the at core of a number of applications, p.e. face recognition, face
verification, pose estimation, video compression, etc.

During years, the Active Shape Model (ASM) [1] and afterwards
the Active Appearance Model (AAM) [2] [3] were the gold standard
for face alignment tasks. In fact, these approaches have popular-
ized the usage of a Point Distribution Model (PDM) as a simple and
efficient strategy to represent the spatial configuration of facial land-
marks. The PDM is a linear compact model that represents the sta-
tistical modes of geometric variation of the training examples. The
AAM extended the ASM by further include a generative appearance
model combined with an image warping normalization step (piece-
wise affine warp). Matching (most times called fitting) an AAM into
a target image, can be posed as a nonlinear optimization that finds
the ’best’ set of shape and appearance parameters that minimizes the
objective function (typically, a L2 loss is involved). The AAM are
intrinsically generative models. Meaning that it can exhibit a poor
performance in unseen data, nevertheless some extensions were pro-
posed to mitigate with this effect, such as Adaptive AAM [4] [5].

Discriminative appearance extensions appeared later, most no-
tably with the introduction of the Constrained Local Model (CLM)
[6] [7] [8] [9] [10] [11]. The CLM still retains the linear shape model

but only accounts with the appearance of local regions (around each
landmark). In fact, CLM uses an ensemble of local feature detectors
(trained discriminatively) to scan locally, producing response maps.
According, the CLM optimization seeks to find the set of shape pa-
rameters that maximize all the local detections at once.

Nowadays, the cascaded regression techniques [12] [13] [14]
[15] [16] [17] [18] had became the mainstream approaches to face
alignment. The cascaded regression framework uses a sequence of
(linear) regressions in order to approximate an intricate mapping be-
tween image data and the landmark updates (in essence, converting a
difficult regression problem in a summation of simple ones). In this
setting, a bank of simple regressors is learnt offline from generated
data (typically a large collection of virtual samples). Usually this
process is computationally costly and high dimensional regressions
are involved. In the other hand, fitting a cascaded model is a very
efficient procedure, it simply consists of applying recursively each
regressor (given an estimate) and keep collecting the shape updates.
Mainly, these methods differ from each other by the way as the re-
gression is accomplished, p.e. boosted regression [12] [19] [14] [15],
least-squares regression [13] [18] or Gaussian Processes regression
[16]. It is worth mentioning that there are other approaches that
apply the same cascaded regression principle, not to image data di-
rectly but to a specific cost function, like AAM fitting [20] [21].

Recently, Convolutional Neural Networks (CNNs) techniques
have emerged in virtually every computer vision task. In contrast
with the previous methods, that require the use of suboptimal hand
crafted features (such as HoG [22] or SIFT [23]), the CNNs have
de ability to learn their own (strong) representations. Several face
alignment CNN based approaches were proposed, we highlight just
a few: The DCNN [24] is a standard CNN based regression approach
was used to locate facial landmarks directly. Later, in [25] succes-
sive stacked auto-encoders were arranged in a coarse-to-fine strat-
egy. The Mnemonic Descent Method (MDM) [26] extends SDM by
combining CNNs and Recurrent Neural Networks. Deep learning
extensions of CLMs and Deformable Parts Models (DPM) [27] have
also been proposed in [28] and [29], respectively, where the first, re-
ferred as the Convolutional Experts Constrained Local Model (CE-
CLM) [28], combines several CNNs structures per landmark (acting
as multiple local detectors) and a global linear shape regularization.

In this paper we revisit the cascade regression framework and
propose an nonlinear extension. Here we adopt a CNN strategy
as base regressor, enhanced by a shape aware loss function. Ad-
ditionally, we perform regression using a linear shape model, which
encodes the shape constraint within the structure of the regression
and promotes a reduced task effort. Moreover, a probabilistic shape
model bootstrap strategy was used to consistently augment data to
train the network. In the process, we leverage the image normaliza-
tion process (warping), common in the AAM/CLM frameworks, to
operate as a ’pose-free’ canonical reference and use partial image
observations to deal with mild occlusions.



Fig. 1. Overview of the proposed nonlinear cascade regression formulation. Each cascade level has an image normalization step (similarity
warp), local region sampling and a nonlinear regression stage (CNN) that provides the update to the shape model’s parameters.

2. BACKGROUND

This section briefly reviews the basics of the cascaded regression as
well as the linear shape model, widely used in deformable models.

2.1. Cascaded Linear Regression

Let us start by defining that a 2D shape, holding v landmarks, is
represented by a vector s = (x1, . . . , xv, y1, . . . , yv)T ∈ R2v .

The key idea behind the cascade regression framework is to learn
a sequence of K linear regressors and their bias {Rk, bk}K1 that al-
low to approximate an nonlinear mapping between an initial shape
(usually a mean shape adjusted to the output of a face detector) and
its true location (the annotation ground truth),

sk = sk−1 + Rk−1F(I, sk−1) + bk−1 (1)

where the superscript index k represents a cascade level and
F(I, sk−1) ∈ Rd denotes feature extraction in the input image I
at the (previous) shape location sk−1. Feature extraction involves to
sample v local regions, with a P × P support size centred at land-
mark sj = (xj , yj) and concatenate the results into a d sized vector.
Each regression matrix Rk ∈ R2v×d relates the extracted features to
the additive updates to be made to the current shape estimate.

Learning each regression matrix can be obtained by minimiz-
ing the expected loss between the predicted and the optimal shape
displacement under many possible initializations [30]

arg min
Rk

N∑
Il

∫
p(skl )

(
s∗ −

(
skl + RkF(I, skl )

))2

∂skl (2)

where N is the number of training images. Here, for sake of clarity,
the bias term (bk) was omitted because it can be absolved into an
additional column of the regression matrix (Rk ∈ R2v×d+1).

Assuming that skl ∼ N (µs,Σs) is drawn from a Normal distri-
bution (capturing the variance of the initial estimate provided by the
face detector), the previous optimization 2 can be approximated by
the discrete form

Rk = arg min
Rk

N∑
i=1

M∑
j=1

‖∆skj − RkF(Ii, skj )‖2 (3)

where M is the number of perturbations / trial simulations and
∆skj = s∗ − skj is the difference between the ground truth (s∗) and
the disturbed shape. Note that the term ∆s acts as regression labels.
The least squares solution of eq. 3 takes the form of

Rk = ∆S
(

FT F
)−1

FT (4)

where F is a large data matrix holding all accumulated extracted fea-
tures and ∆S contains the corresponding shape deviations ∆sj for
each of the M trials.

2.2. Linear Shape Model

As pointed out, we follow a PDM [31] like model. Briefly, this
kind of model is captured from a set shape examples (annotations)
where a Procrustes analysis is applied in each example, removing the
similarity effects. Follows a Principal Components Analysis (PCA),
which results in

B(s; b) = s0 +

n∑
i=1

φibi = s0 + Φb, b ∼ N (0,Σb) (5)

where b ∈ Rn is the shape parameters vector (representing the de-
formation weights) and Φ ∈ R2v×n is the shape subspace. The
Σb = diag(λ1, . . . , λn) is covariance of the shape parameters with
λi being the ith data eigenvalue (provided by PCA).

Dealing with 2D pose is more troublesome. Fortunately we can
avoid nonlinear equations in the similarity transformation by us-
ing the following reparameterization of the pose parameters q =
[s cos(θ) − 1, s sin(θ), tx, ty]T where s is the scale, θ the rotation
and (tx, ty) are 2D translations. Under this setting [3], 2D pose
function can be expressed as

S(s; q) = s +

4∑
j=1

ψjqj = s + Ψ(s)q, q ∼ N (0,Σq) (6)

note however that Ψ(s) ∈ R2v×4 is a function of s. The quantity
Σq is the covariance of the pose parameters which can be estimated
in the Procrustes procedure. For the sake of notation, we define a
combined model having all the parameters together p ∈ Rn+4 (but
keep in mind that s = S(B(b); q)), likewise Σp stands for the com-
bined covariance matrix. Additionally we define I(S(p)) to be the
similarity (back) warped image I with the given (pose) parameters.

3. ENHANCED CASCADED REGRESSION

One major drawback of the cascade regression framework is that,
in its basic form (as described in section 2.1), it does not enforce
shape consistency [32] [26]. In this work we propose to extend this
framework by exploiting the compactness of a linear shape model
combined with the convenience of the pose representation, simulta-
neously taking advantage of nonlinear regression steps using a Con-
volutional Network Network (CNN).

Formally, our cascade follows the following recursion

pk = pk−1 + γRk−1{L(I(S(pk−1)))} (7)

where p are combined shape and pose parameters, Rk is a non-
linear mapping function that regresses a set of local patches, taken
from a ’pose-normalized’ warped image, to the shape parameters and



L(.) is an operator that defines local image sampling (around each
landmark). Finally, γ is the step-size which is included to minimize
overshooting (found by cross-validation).

Figure 1 shows an overview of the proposed technique. Assum-
ing that Rk is known, the process of face alignment is accomplished
by following eq. 7. Essentially, each cascade step k iterates between
few stages: face normalization (image warp), local patch sampling,
regression and, lastly, the parameters update. Given an estimate
p0 (provided by a face detector), the input image is first similarity
warped with the current pose estimate I(S(p0)). Follows local im-
age sampling, where we choose to use a partial image representation
to better deal with occlusions. The nonrigid shape parameters com-
ponent provide the shape location, at the warped image reference,
where we sample all the v local regions L(I(S(p0))). We gather a
3D array (P ×P ×v) of data that is feed as the input of a CNN (that
effectively operates as being Rk) and perform the nonlinear regres-
sion, providing the parameters update to the next cascade stage.

3.1. Nonlinear Regression

As described before, a CNN structure is explored to perform nonlin-
ear regression. In particular, we aim to estimate a nonlinear function
Rk = {r1, r2, ...rL} with L layers for each step of the cascade k as

Rk = arg min
Rk

N∑
i=1

M∑
j=1

‖∆pk
j − rL(...r1(L(Ii(S(pk

j )))))‖2Σpk

(8)
where ∆pk

j = p∗ − pk
j is the shape parameters deviation from the

ground truth (regression labels), M is again the number of virtual
samples and

rl(al) = σ(wlal + bl). (9)
In the previous eq. 9, the rl is the mapping function of the lth layer
of the network, σ(.) is the activation function, wl is the weights (or
filters) and al is the feature representation at each layer.

3.1.1. CNN Topology

The figure 2 shows a diagram with the CNN network topology. In
essence, the network contains three convolutional layers dedicated to
feature extraction, however, the first convolutional layer is deep-wise
(forcing the first stack of filters to be specialized in each landmark
independently). We recall that, the input of the network is a 3D array
with size P × P × v. All convolutional layers are defined to have
32 filters, each with a kernel 3 × 3 and no padding. Each convolu-
tional layer is followed by batch normalization and a rectified linear
(ReLU) unit. Follows a dropout layer (0.4) to minimize overfitting,
a fully connected layer and finally a regression layer to the n + 4
parameters. Finally, we highlight that the same CNN architecture is
used across all the cascade stages.

3.1.2. Loss function

The optimization in 8 is defined in terms of a quadratic weighted
error term. According, our CNN optimization uses the following loss
function and gradient w.r.t. the regression predictions, respectively:

Lr =
1

N

N∑
j=1

∆pT
j Σ−1

p ∆pj ,
∂Lr

∂p
= 2∆pT Σ−1

p . (10)

The previous eqs. 10 were inspired by the Mahalanobis metric where
each shape model dimension is weighted properly. It is worth men-
tioning that the cascade superscript k was omitted, but keep in mind
that the covariance Σp shrinks across cascade levels.

Fig. 2. Topology of the CNN in each stage of the cascade.

Learn the shape model (s0,Φ,Ψ)1
Get an initial estimate for all virtual instances p0

ij2
for cascade k = 1 to K do3

D = 0P×P×v×(N×M) //4D data buffer4
Σpk = cov(pk

ij − p∗) //estimate noise5
for image i = 1 to N do6

for virtual sample j = 1 to M do7
pk
ij = pk

ij + ν, ν ∼ N (0,Σpk ) //add noise8
∆pk

ij = pk
ij − p∗ //regression labels9

Ii(S(pk
ij))← Ii //warp image10

Dij = L(Ii(S(pk
ij))) //local regions11

end12
Estimate Rk given {∆p,D} //optimize CNN13

end14

pk+1
ij ← pk

ij + γRk{Dij} //update cascade15
end16

Algorithm 1: Shape Model Regression (SMR) learning steps.

3.2. Virtual Samples Generation

A known issue in CNN approaches is that they require massive
amounts of data to perform well. Here we propose to generate the
M virtual samples (eq. 8) by bootstrapping the shape model. We
can take advantage of the PDM probabilistic framework, combined
with the image warping mechanism, to generate a virtually infinite
number of samples, i.e. the ith ’real’ example can be augmented M
times by

Ii(S(pi)) −→ Ii(S(pij)), pij ∼ N (pi,Σpk ). (11)

Data augmentation is done by generating perturbed shapes and poses
simultaneously. The learning procedure is described in algorithm 1.

4. EXPERIMENTAL EVALUATION

The evaluation takes place in several ’in the wild’ databases. These
datasets contain images that were acquired in unconstrained scenar-
ios, i.e. under variations of lighting, focus, facial expression, pose
and occlusions. A total of four datasets were used, namely: (1) The
LFPW [37] database that has 811 (train) and 224 (test) images col-
lected over web searches (68 landmarks [38]); (2) The HELEN [39]
database holds 2000 (train) plus 330 (test) images taken from the
flickr site (68 landmarks [38]); (3) The LFW [40], the largest set,
has more than 13000 images (10 landmarks); The train/test portions
had a split of 70/30; Finally, (4) the 300W [41] [38] consists of 600
images taken in both indoor and outdoor scenarios. The train set has
a total of 6197 images taken from other datasets (68 landmarks).

The main evaluation compares our proposed technique, desig-
nated here as Shape Model Regression (SMR), against a classical
Constrained Local Model (CLM) method (serving as a baseline),
the part-based Tree-Model (TM) [27], standard cascaded regression
techniques and also CNNs based techniques. The classical CLM is
the Subspace Constrained Mean-Shifts (SCMS) [8]. The standard
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(%) Area under fitting curve LFPW HELEN LFW 300W
Initial Estimate [33] 30.5 25.4 49.0 17.6
SCMS [8] 42.4 36.0 57.3 23.2
TM [27] (p146) 40.8 39.7 47.7 30.6
SDM [13] 60.2 48.6 71.5 36.5
SDM+ (w/ linear shape model) 63.6 52.1 72.4 39.0
TCDCN [34] 59.5 61.1 61.0 44.6
Face++ [35] [36] 66.7 67.4 74.8 58.4
CEN [28] 67.2 63.6 72.3 54.0
SMR (our method) 69.6 69.1 75.9 59.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Step size 

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

R
M

S
 e

rr
o
r

Step size cross-validation

(e)
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SMR∗ 180 min / cascade 34 ms / cascade

(*) Intel i7-3930K, 32GB, Nvidia GTX Titan X.

Fig. 3. Fitting performance curves in the (a) LFPW, (b) HELEN, (c) LFW and (d) 300W databases, respectively. The table show a quantitative
measure of area under the fitting curve. (e) Step size cross-validation. The images on top are SMR fitting examples in the LFPW dataset.

cascaded regression approaches are the Supervised Descent Method
(SDM) [13], which was described in section 2.1 and a variation on
this, referred to as SDM+, which corresponds to an implementation
that makes regression using a linear shape model. The CNNs based
techniques are the Tasks-Constrained Deep Convolutional Network
(TCDCN) [34], the Convolutional Experts CLM (CE-CLM) [28] and
finally, the commercial solution Face++ [35] [36].

The methods SCMS, SDM, SDM+ consist of our own imple-
mentations. The remaining techniques are based in each author’s
supplied code (with the Face++ providing a free developer API). All
methods were initialized with the mean shape and the pose parame-
ters obtained by regression (from the output of a face detector [33] to
its corresponding parameters). In SCMS, the local landmark detec-
tors have a support size of 31 × 31, being MOSSE filters [42] built
from grey level intensities. The individual response maps optimiza-
tion include mean-shift updates with a kernel bandwidth schedule
of (15, 10, 5, 2). Both the cascaded regression models (SDM and
SDM+) use HoG [22] features, have a local path size of 33 × 33
(cell size = 3) and run for K = 6 cascade levels.

Regarding our SMR approach, each image is sampled around
each landmark using a local region of 31 × 31 (where we remove
the mean and normalize by the standard deviation each region indi-
vidually), the shape model holds 97.5% of the variance of the data
(resulting in n = 27 shape parameters in the LFPW dataset). Each
CNN regression network was optimized with Adam [43] using the
default hyperparameters, an initial learning rate of 10−4 with expo-
nential decay of 0.90 every 5000 iterations and a mini-batch with 64
examples. The number of cascade levels was set to K = 6.

The cascade recursion step-size (γ) was subject to an additional
cross-validation to find a suitable value. The figure 3-(e) shows the
average Root Mean Squared error in a randomly selected test set
(500 images taken from LFPW and HELEN) for several values of γ.
The minimal value of γ = 0.595 was found and used afterwards.

The fitting performance is measured, as standard, by the nor-
malized alignment error. Such a measure is given by the mean er-
ror per landmark as fraction of the inter-ocular distance, deyes, as
em(s) = 1

v deyes

∑v
i=1 ‖s

i− si∗‖ where si∗ is the location of ith land-
mark in the ground truth shape annotation. The figure 3 shows the
cumulative error distribution functions for all the techniques in every
dataset. The table included in the same figure shows a quantitative
measure of the results which is defined as the ratio, in percentage, be-
tween the area bellow the fitting curve and the total area of a ground
truth curve. The shape initialization is included in the evaluation
charts. Additionally, SMR learning and execution times are shown.

The results show that the CLM method (SCMS) performs better
that TM (whose limited accuracy comes from the simple regular-
ization used, designed for fast inference), followed by the SDM cas-
caded regression methods. However, and as expected the CNN based
solutions take the lead in terms of fitting accuracy. When comparing
SDM with SDM+, we can see that there is a significant difference
between regressing in x/y spatial locations and doing the same but
with a constrained shape model (that has an underlying structure).
The same logic can be applied to justify the difference in perfor-
mance between Face++ and our SMR method. The CEN being a
CLM technique includes a PDM, however, the CNN regression is
landmark based, meaning that the shape model is just used as a spa-
tial regularization. In contrast, our SMR approach embeds the global
shape constraint within the structure of the regression.

5. CONCLUSIONS

This paper targets the cascaded regression framework with a nonlin-
ear extension. Our proposed model takes advantage of a compact
linear shape model combined with a series of CNNs, effectively en-
coding the shape within the structure of regression. The experimen-
tal results demonstrate the accuracy and performance of our method.
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