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Gradient Shape Model

Pedro Martins · João F. Henriques · Jorge Batista

Abstract For years, the so-called Constrained Local

Model (CLM) and its variants have been the gold stan-

dard in face alignment tasks. The CLM combines an

ensemble of local feature detectors whose locations are

regularized by a shape model. Fitting such a model

typically consists of an exhaustive local search using

the detectors and a global optimization that finds the

CLM’s parameters that jointly maximize all the re-

sponses. However, one major drawback of CLMs is the

inefficiency of the local search, which relies on a large

amount of expensive convolutions. This paper intro-

duces the Gradient Shape Model (GSM), a novel ap-

proach that addresses this limitation. We are able to

align a similar CLM model without the need for any

convolutions at all. We also use true analytical gradi-

ent and Hessian matrices, which are easy to compute,

instead of their approximations. Our formulation is very
general, allowing an optional 3D shape term to be seam-

lessly included. Additionally, we expand the GSM for-

mulation through a cascade regression framework. This

revised technique allows a substantially reduction in the

complexity/dimensionality of the data term, making it

possible to compute a denser, more accurate, regression

step per cascade level. Experiments in several standard

datasets show that our proposed models perform faster
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than state-of-the-art CLMs and better than recent cas-

cade regression approaches.

Keywords Facial landmark localization · Face

alignment · Constrained Local Model · CLM.

1 Introduction

Nonrigid face registration, sometimes known as facial

alignment, plays a fundamental role in many computer

vision tasks. Typical applications include visual track-

ing, recognition (identity and facial expression), bio-

metric security, video compression, head pose estima-

tion and many others. In general, the main goal of

face registration consists of locating, with accuracy, the

semantic structural facial landmarks (fiducial points)

such as eyes, nose, mouth, chin, eyebrows, etc. Although

this problem has been studied for years, it still is chal-

lenging to locate and consistently track subjects with

previously unseen appearances and under unconstrained

acquisition conditions (p.e. changes in pose, lighting,

occlusion, resolution and focus).

Much has been done in the past, but since the in-

troduction of the Active Shape Model (ASM) (Cootes

et al, 1995) and shortly after with the Active Appear-

ance Model (AAM) (Cootes et al, 2001) (Matthews and

Baker, 2004) (Alabort-i-Medina and Zafeiriou, 2017)

(Tzimiropoulos and Pantic, 2017), it became immensely

popular to align faces by finding the parameters of a

linear shape model.

Later, discriminative based extensions, namely the

Constrained Local Model (CLM) (Cristinacce and Cootes,

2008) (Wang et al, 2008) (Saragih et al, 2010) (Cootes

et al, 2012) (Asthana et al, 2013) (Martins et al, 2012)

(Martins et al, 2014), have been proposed. These ap-

proaches improve the model’s representation, moving
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away from the holistic texture representation, by only

accounting for local correlations between features (around

facial landmarks). In this architecture, both shape and

appearance are combined by constraining an ensem-

ble of local feature detectors to lie within the subspace

spanned by a shape model. In practice, the CLM im-

plements a two step fitting stage: (1) a local search and

(2) a global optimization. The first step performs an

exhaustive local search using an expert feature detec-

tor, obtaining response maps for each landmark (the

data term). Afterwards, a global optimization strategy

finds the model’s parameters that jointly maximize all

responses simultaneously (regularization term).

The most popular CLM optimization strategies pro-

pose to replace the true response maps by simple para-

metric forms: Weighted Peak Responses (Cootes et al,

1995), Gaussians Responses (Wang et al, 2008), Mix-

ture of Gaussians (Gu and Kanade, 2008) or nonpara-

metrically, using the mean-shift algorithm (Saragih et al,

2010), and perform a global optimization over these

forms instead of the original response maps. Bayesian

CLM had also been proposed (Paquet, 2009) (Martins

et al, 2012) (Martins et al, 2014), where the shape

parameters are inferred in a Maximum A Posteriori

(MAP) sense. In BCLM (Paquet, 2009), a Gaussian in-

ference was made using Gaussian assumptions in both

likelihood/data and prior terms. The revised Bayesian

CLM framework in (Martins et al, 2016) infers second

order statistics of the parameters by formulating the

overall alignment in terms of a Linear Dynamic System.

The npBCLM (Martins et al, 2014) extends the previ-

ous by making non-parametric inference of the CLM’s

parameters.

Most of the previously CLM solutions established

the core foundations of many other approaches. As ex-

ample we highlight the use of enhanced shape mod-

els (Belhumeur et al, 2011) (Zhou et al, 2013b) (Zhu

and Ramanan, 2012) (non-parametric and tree struc-

tured models, respectively), others like (Dantone et al,

2012) (Cristinacce and Cootes, 2007) (Valstar et al,

2010) that predict local landmark updates by regres-

sion, (Fanelli et al, 2013) (Tzimiropoulos et al, 2012)

that use discriminative holistic appearances and (Tz-

imiropoulos and Pantic, 2014) that use a part-based

generative appearance model.

Recently, a different paradigm has emerged, the so-

called cascaded regression techniques (Cao et al, 2012)

(Xiong and De la Torre, 2013) (Xiong and De la Torre,

2015) (Tzimiropoulos, 2015) (Burgos-Artizzu et al, 2013)

(Kazemi and Sullivan, 2014) (Lee et al, 2015) (Jourabloo

and Liu, 2015) (Zhu et al, 2015) (Sánchez-Lozano et al,

2018). These methods learn a series of averaged descent

directions by performing offline simulations. This pro-

cess is usually chained throughout a cascade (iterative

regression), thus consisting of learning an ensemble of

regressors, where each regressor relates the extracted

features at a given image location with the updates

to be made to the control parameters. Fitting such a

cascaded model simply consists of applying recursively

each regressor (from an initial estimate) and keep col-

lecting the parameters updates. In general, these meth-

ods differ from each other by the way as the regres-

sion is accomplished, p.e. boosted regression (Cao et al,

2012) (Ren et al, 2014) (Burgos-Artizzu et al, 2013)

(Kazemi and Sullivan, 2014), least-squares regression

(Xiong and De la Torre, 2013) (Xiong and De la Torre,

2015) (Sánchez-Lozano et al, 2018) or Gaussian Pro-

cesses regression (Lee et al, 2015).

Still under this multi-stage paradigm, it is worth

mentioning some of the deep neural networks approaches,

in particular, the Convolutional Neural Networks (CNNs)

based methods. Several techniques have been proposed,

we highlight just a few. In (Sun et al, 2013) a standard

CNN based regression approach was used to locate fa-

cial landmarks. Later, in (Zhang et al, 2014a), succes-

sive stacked autoencoders were arranged in a coarse-

to-fine strategy. The Tasks-Constrained Deep Convolu-

tional Network (TCDCN) (Zhang et al, 2014b) (Zhang

et al, 2016) proposes a multi-task learning framework

for joint facial landmark localization and attribute clas-

sification, such as gender, expression and pose. The de-

tection of such atributes was used to assist in the face

alignment procedure. In (Zhou et al, 2013a), a coarse-

to-fine CNN based framework was used to iteratively

refine a subset of facial landmarks (in local regions de-

fined by previous network levels). Extensions of this

work (Huang et al, 2015) (Fan and Zhou, 2016), made

the foundations for the Face++ (Face++, 2018) comer-

cial software. The Mnemonic Descent Method (MDM)

(Trigeorgis et al, 2016) combines cascaded regression

with feature learning (using CNNs). This method ex-

tends SDM (Xiong and De la Torre, 2013) with a Recur-

rent Neural Network (RNN). Deep learning extensions

of CLMs and Deformable Parts Models (DPM) (Zhu

and Ramanan, 2012) have also been proposed (Zadeh

et al, 2017) and (Songsri-in et al, 2018), respectively.

The first approach, referred as the Convolutional Ex-

perts Constrained Local Model (CE-CLM) (Zadeh et al,

2017) combines several CNNs structures per landmark

(acting as multiple local detectors) and the global CLM

like shape regularization. The Face Alignment Network

(FAN) (Bulat and Tzimiropoulos, 2017b) applies con-

volutional heatmap regression using a stack of Hour-

glass networks (Newell et al, 2016). Finally, in (Bulat

and Tzimiropoulos, 2017a), the same authors explored



Gradient Shape Model 3

binarized Hourglass-like Convolutional Network struc-

tures to improve the computational performance.

Despite all previous achievements, in our understand-

ing, the CLM still remains one of the most influential

techniques to locate facial features. However, the major

drawback of all CLM methods is the inefficiency of the

local search (data term), which relies on a large amount

of expensive convolutions required for each landmark.

Evaluating this data term consumes around of 90% of

the total computational time.

The first part of this paper tackles the CLM’s foun-

dations and introduces the Gradient Shape Model (GSM),

that addresses the previous limitation. The GSM is able

to align a similar CLM model without the need for any

convolutions at all. Moreover, we use true analytical

gradient and Hessian matrices, which are easy to com-

pute, instead of their approximations. We additionally

show how an optional 3D shape term can be seamlessly

included, effectively constraining the 2D model search

and improving the overall fitting performance.

Later on, we revisit the cascade regression formu-

lation. While such methods can be considered efficient

concerning online model fitting, the learning stage (en-

semble of regressors) is a different story. Learning each

cascade level involves to manage massive data matrices

(that holds the extracted features from every training

image and every simulation made) and the regression

process itself.

This paper also presents a cascade regression exten-

sion of the GSM, referred as GSM-CR. In this novel

approach, which adopts a least-squares regression ap-

proach (Xiong and De la Torre, 2013), we show how

to efficiently extract local gradient features and sub-

stantially reduce the dimensionality of the data term,
overcoming the computational burden of such learning

methods. Moreover, since the performance of the cas-

cade regression methods is deeply related to the density

of the simulations, our approach is therefore more ac-

curate for the same computational cost.

1.1 Contributions

This paper makes the following contributions:

1. We introduce the Gradient Shape Model (GSM)

that aims to replace the CLM’s exhaustive local

search (convolutions) with a fast local gradient esti-

mate, that is trained discriminatively. We also show

how second order gradients can easily be computed

while designing an unifying Newton optimization.

2. A conceptually simpler cost function is proposed,

combining the local cost with the log-likelihood of a

Gaussian shape prior. Unlike previous work, we do

not project shapes into a low dimensional subspace.

Instead we rely on a simple regularization of the

covariance to prevent over fitting.

3. True analytical gradient and Hessian matrices are

computed, unlike previously proposed CLM approx-

imations (section 3).

4. We highlight the extensibility of this formulation,

by proposing an additional 3D Gaussian shape prior

(section 4).

5. Finally, we expand the GSM approach into a cas-

cade regression formulation (section 5). We show

how our methodology leads to a substantially reduc-

tion in the complexity/dimensionality of the data

term, making it possible to compute a denser, more

accurate, regression step per cascade level.

The proposed methods are validated with extensive

experiments (section 6), showing a significant speed-up

(by at least an order of magnitude) over other CLM

techniques. Similarly, the extended GSM-CR formula-

tion outperforms other cascade regression based strate-

gies in training times and overall accuracy.

1.2 Outline

The remaining of the paper is organized as follows: sec-

tion 2 briefly reviews the CLM formulation. Our GSM

formulation is presented in section 3. The 2D+3D GSM

extension appears right after in section 4. The GSM-CR

cascade regression strategy is described in section 5. Fi-

nally, sections 6 and 7 show the experimental results

and the conclusions, respectively.

2 Revisiting of the Constrained Local Model

The Constrained Local Model (CLM) consist of a col-

lection of v local landmark detectors, denoted here as

{hi}v1, whose locations are regularized by a linear shape

model. The following sections briefly describe the shape,

the local detectors and some of the most popular fitting

strategies.

2.1 Shape Model

The 2D shape is represented by the locations of a set of

v landmarks with a 2v dimensional vector s = (x1, . . . , xv,

y1, . . . , yv)
T . The shape model itself is a Point Distri-

bution Model (PDM) (Cootes and Taylor, 2004) that

describes each shape by following a linear parametric

model

s ≈ S (s0 + Φbs,θ) (1)
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where s0 is the mean shape (also known as the base

mesh), Φ is the shape subspace matrix holding n eigen-

vectors (that resulted from applying Principal Compo-

nents Analysis on a set of normalized training shapes)

and bs ∈ Rn is the shape parameters vector represent-

ing the mixing weights. Please refer to (Cootes and Tay-

lor, 2004) for additional details on PDMs. The ability

to model the 2D rigid pose is included by the similar-

ity transformation S(s,θ) where each landmark point

si = (xi, yi)
T is warped around the base mesh by

S(si,θ) =

[
a −b
b a

]
(si − sm) +

[
tx
ty

]
+ sm (2)

where θ = [a, b, tx, ty]T is the pose parameters vec-

tor with a = s cos(θ), b = s sin(θ) being combined

scale and rotation and (tx, ty) the translations, all ex-

pressed w.r.t. s0
1. The sm = [mean(sx0), mean(sy0)]

T
is

the mean shape center of mass. The full CLM parame-

ters are usually packed into a single set represented by

b = [bTs |θ
T ]T ∈ Rn+4.

2.2 Local Detectors

Different kinds of local detectors have been used within

the CLM framework (Cristinacce and Cootes, 2006)

(Wang et al, 2008) (Cootes et al, 2012) (Baltrušaitis

et al, 2013) (Martins et al, 2012). The initial formula-

tion used generative based templates (Cristinacce and

Cootes, 2006) (Cristinacce and Cootes, 2008). After-

wards, the usage of discriminative based detectors were

introduced (Wang et al, 2008) (Saragih et al, 2009), in

particular, linear SVMs trained with aligned vs. mis-

aligned patch examples.

Recently, correlation filters have also been employed

(Martins et al, 2012) (Martins et al, 2014), in particular

the MOSSE filter (Bolme et al, 2010). The MOSSE fil-

ter, when compared to the previous, has several advan-

tages: it extends the linear SVM scalar labels with 2D

maps of real valued labels (meaning that a large amount

of virtual samples are included in the the training stage

(Henriques et al, 2013)); it allows discriminative train-

ing using only aligned (positive) data; it maintains its

linear nature, and finally, it performs better in some

cases (Martins et al, 2016).

In this work, we follow the extended multidimen-

sional MOSSE formulation, namely the Multi-Channel

Correlation Filter (MCCF) (Galoogahi et al, 2013) (Bod-

deti et al, 2013). Briefly, finding each MCCF filter hi

1 It is worth mentioning that some authors use a slightly
different pose parametrization (θ′ = [a − 1, b, tx, ty]T ) that
allows to append to Φ a special set of 4 eigenvectors that
linearly model the 2D pose (Matthews and Baker, 2004).

Fig. 1 Comparison between the proposed Gradient Shape
Model (GSM) and the Constrained Local Model (CLM),
shown in right and left, respectively. Fitting a CLM relies in a
two step strategy: locally scan with the local detectors, pro-
ducing response maps, and then jointly optimize the shape
parameters that maximize all the responses. The GSM, in
contrast, aims to estimate directly the local gradients (and
Hessian) and thus avoids the costly exhaustive local search
(no response maps are required).

(for the ith landmark), can be posed by solving the fol-

lowing linear regression problem

arg min
hi

N∑
j=1

D∑
k=1

(
f
(k)
j ~ h

(k)
i − gj

)2
+ ε

D∑
k=1

||h(k)
i ||

2 (3)

where (~) is the correlation operator, f
(k)
j represents

features extracted from the kth image channel (D in

total) of the jth training patch (with L× L size), N is

the total number of examples and ε is a regularization

parameter.

In eq. 3, gj stands for the desired target correla-

tion in the jth example (the labels), which is typically

defined as a 2D Gaussian (when aiming to predict lo-

cations)

gj(x, y) = exp

(
−
(
x2 + y2

)
2σ2

h

)
(4)

where (x, y) are control points over the support region

and σh is the standard deviation (that controls the ratio

between positive and negative virtual samples). Eq. 3

can be efficiently solved in the Fourier domain (where

convolutions become products), with the solution being

hi = F−1
(εI +

N∑
j=1

ΞTj Ξj)
−1

N∑
j=1

ΞTj (1D ⊗F{gj})


∗

(5)

where F represents the 2D Fourier transform, Ξj =[
diag(F{f(1)j })T , . . . ,diag(F{f(D)

j })T
]

defines the Fourier
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transform of the ’extended’ data matrix, 1D is a D di-

mensional vector with ones, I is an identity matrix with

appropriate dimensions and the symbols (∗), (T ), (⊗)

represent the complex conjugate, conjugate transpose

and Kronecker product, respectively.

A closer look on Ξj shows that it is a heavily sparse

matrix. According, an efficient solution can be found

through variable re-ordering (please refer to (Henriques

et al, 2013) (Galoogahi et al, 2013) for additional de-

tails).

Taking into account that most CLM approaches rely

exclusively in single channel features (grey level), it is

worth to mention that when D = 1, the eq. 5 reduces

to

h
(1)
i = F−1

{ ∑N
j=1 F{gj} � F{f

(1)
j }∗∑N

j=1 F{f
(1)
j } � F{f

(1)
j }∗ + ε

}∗
(6)

where � symbol stands for the Hadamard product.

2.3 CLM Alignment

In general, CLMs seek to find the optimal set of param-

eters that maximize the cost

b̂ = arg max
b

v∑
i=1

Di (I(si),b)− λ0 bTΣ−1b b (7)

where the first term (data term) is the summation of a

measure of goodness in matching the appearance across

landmarks and the second term (regularization) penal-

izes the shape model against large deformations. The

Σb is the covariance of the shape parameters, assumed

to be independent and Gaussian distributed (diagonal
matrix with PCA eigenvalues). The parameter λ0 is

a scalar that controls the strength of the regulariza-

tion. A higher lambda ’forces’ the overall solution to

follow a more rigid shape model and, by contrast, a

lower lambda loosens the model. In theory, the value of

λ0 can be determined by computing the ratio between

the data and the regularization term across the training

data (evaluating local landmark detections at training

shape locations), however, in practice a bit of tuning

may be required (see section 6).

Normally, the landmark detectors are designed to

operate at a given scale. The CLM framework deals

with this by including a warp normalization step, in

particular, a similarity transformation into the base

mesh. In this sense, the data term can be defined as

Di(I(si),b) = S−1(I(si),θ) ∗ hi, (8)

where with some abuse of notation we denote S−1(I(si),θ)

to be the ith image patch, centred at si, sampled at a

image previously warped (inverse similarity with pa-

rameters θ). In this context, si follows eq. 1 without

pose. Finally, hi is the ith local detector, defined in sec-

tion 2.2. Please see figure 1. Note that around 90% of

the total computational cost consists of evaluating the

data term (convolutions).

The optimization, in eq. 7, is usually posed as an

minimization problem

min
b
−

v∑
i=1

Di (I(si),b) + λ0 bTΣ−1b b (9)

and solved using Newton’s methods by iterating

b(τ+1) ← b(τ) − γH−1(b)J(b)︸ ︷︷ ︸
∆b

(10)

where J(b) ∈ R2v×(n+4), H(b) ∈ R(n+4)×(n+4) and γ

are the Jacobian, the Hessian matrix and the step size,

respectively. In general, and to the best of our knowl-

edge, only Gauss-Newton approximations to the Hes-

sian have been used so far.

Several CLM alignment solutions have been pro-

posed. The main difference between them can be es-

sentially reduced to the way the data term is treated.

In the following subsections we briefly describe some of

the most popular strategies.

2.3.1 Active Shape Model (ASM)

The ASM (Cootes et al, 1995) simply takes as the so-

lution the location where the response map Di has its

maximum score µi = arg maxDi and its uncertainty

is set to be inversely proportional to the peak value

w−1i = maxDi, that leads to

∆b = H−1ASM

(
λ0Σ

−1
b b +

v∑
i=1

wiJ
T
i (si − µi)

)
(11)

where Ji is the Jacobian sub-matrix (2×(n+4)) regard-

ing the ith landmark and HASM = λ0Σ
−1
b +

∑v
i=1 wiJ

T
i Ji

is the Hessian matrix.

2.3.2 Convex Quadratic Fitting (CQF)

The CQF (Wang et al, 2008) considers the response

maps to be fully approximated by a Gaussian distri-

bution. The problem, in this case, consists of fitting a

2D Gaussian to weighted data, µi = siDi and ΣDi =

cov(siDi) where the update is

∆b = H−1CQF

(
λ0Σ

−1
b b +

v∑
i=1

JTi Σ
−1
Di

(si − µi)

)
(12)

with HCQF = λ0Σ
−1
b +

∑v
i=1 JTi Σ

−1
Di

Ji.
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2.3.3 Subspace Constrained Mean-Shifts (SCMS)

The SCMS (Saragih et al, 2010) approximates Di by a

non-parametric representation using a Kernel Density

Estimator (KDE) (Silverman, 1986) (isotropic Gaus-

sian kernel). The mean-shift algorithm (Comaniciu and

Meer, 2002), with a decreasing annealing bandwidth

schedule, was used to maximize over the KDE. The

SCMS update is given by

∆b = H−1SCMS

(
λ0Σ

−1
b b− JT ν

)
(13)

where each element νi is the ith mean-shift landmark

update (ν ∈ R2v) and HSCMS = λ0Σ
−1
b + JTJ.

Finally, we point out that a detailed computational

efficiency comparison can be seen later, in section 6.3.

3 Gradient Shape Model

The Gradient Shape Model (GSM) aims to reduce the

computational cost of aligning an image by avoiding the

need for convolutions. This is accomplished by replacing

the exhaustive scan (and the local optimization strat-

egy) around each landmark by a gradient based search.

Figure 1 highlights the difference between deformable

model fitting with a standard CLM and with our pro-

posed method (i.e. exhaustive local search vs gradient

search).

3.1 The Alignment Goal

The GSM leaves out the lower dimensional representa-

tion of the shape (the PDM) and uses as latent variables

the shape itself (which can be seen as a PDM without

any PCA reduction). The GSM seeks to minimize the

cost function, f ∈ R2v+4 → R, given by

f(s,θ) = −
v∑
i=1

Di(I(si),θ) + λ1R(s,θ) (14)

where Di is a similar data term (in the sense that in-

verse warping with parameters θ is still required) and

R(s,θ) is a new regularization term given by

R(s,θ) = (S(s,θ)− s0)
T
Σ−1s (S(s,θ)− s0) . (15)

Now s represents the shape expressed at the image

frame, which requires mapping it with S(s,θ) to prop-

erly apply a regularization. The Σs is the full 2v×2v co-

variance of all shapes (precomputed) and λ1 is a scalar

regularization weight.

(a) Ii (b) hi (c) ∂hi
∂xi

(d) ∂hi
∂yi

(e) ∂2hi
∂x2

i

(f) ∂2hi
∂y2

i

(g) ∂h2
i

∂xi∂yj

Fig. 2 Local detector gradients for the eye, nose and mouth
corner regions, respectively (displaying both grey level and
HoG based representations). The (b) column shows the typi-
cal detectors used in CLM (when g is a standard Gaussian).

The regression targets g, ∂g
∂xi

, ∂g
∂yi

, ∂
2g
∂x2

i

, ∂
2g
∂y2

i

and ∂2g
∂xiyi

are

represented in the first row of images.

The goal is to optimize s and θ using a true Newton

approach. By linearity, the overall gradient will be the

summation of two parts (data and regularization)

∇f (s,θ) = ∇D(s) + λ1∇R(s,θ) (16)

similarly, the Hessian will be

Hf (s,θ) = HD(s) + λ1HR(s,θ). (17)

The following sections will cover each of the previous

terms, independently.

3.2 Gradient of the Data Term

For the sake of notation, let’s define a vectorized ver-

sion of the sampled warped patch, from eq. 8, as Ii ≡
S−1(I(si),θ). The differentiation property of the convo-

lution allows us to write ∂
∂si

(Ii∗hi) = ∂Ii
∂si
∗hi = Ii∗ ∂hi∂si

.

However, in this approach, we are only concerned when

both convolution signals are aligned (as Newton meth-

ods only care about the evaluation of gradients at the

operating point) or ∂
∂si

(Ii ∗ hi)|si = ITi ∂hi
∂si

, meaning

that the gradient of the data term can be easily eval-

uated by a simple dot product between the sampled



Gradient Shape Model 7

(pose-normalized) patch and the gradient of the local

detector (both vectorized).

Recalling eq. 5, we see that the filter hi is a lin-

ear function of the desired correlation g, as the Fourier

transform (and its inverse) is linear (this remark is eas-

ier to see in eq. 6). Formally, defining Ω as the Discrete

Fourier Transform (DFT) matrix and considering that

F{f} = Ω f and F−1{f} = Ω−1f = ΩT f we can rewrite

any of the eqs 5 or 6 as

hi = ΩTK1 Ω g = K2 g (18)

where K1 and K2 are constant matrices that do not

depend on the spatial dimensions.

According, evaluating the gradient of the local de-

tector only requires to build the filter with the gradient

of g (by modifying the regression targets/labels). Ad-

ditionally the minus term of the data term (in eq. 14)

can be even absorbed

∂(−g)

∂xi
=
xi
σ2
h

exp

(
−
(
x2i + y2i

)
2σ2

h

)
, (19)

similarly for the vertical component

∂(−g)

∂yi
=

yi
σ2
h

exp

(
−
(
x2i + y2i

)
2σ2

h

)
. (20)

Following this approach the overall gradient of the

data term (vector 2v + 4) can be written as

∇D(s) =
[
IT1 ∂h1

∂x1
. . . ITv ∂hv

∂xv
IT1 ∂h1

∂y1
. . . ITv ∂hv

∂yv
04

]T
.

(21)

Figure 2 (a-d) shows examples for sampled patches

(Ii), the standard MCCF filter (hi), and their hori-

zontal (∂hi∂xi
) and vertical gradients (∂hi∂yi

), respectively.

Both grey level and HoG (Dalal and Triggs, 2005) fea-

tures representations are shown. The first row of images

highlight the regression targets.

3.3 Gradient of the Regularization Term

Naturally, the regularization term (in eq. 15) has a gra-

dient given by

∇R(s,θ) =

[
∂R

∂s

∂R

∂a

∂R

∂b

∂R

∂tx

∂R

∂ty

]T
. (22)

A closer look to eq. 15 shows that R(s,θ) is in fact a

composition of two functions. The first maps the shape

into the base mesh and the second is simply a multi-

dimensional Gaussian distribution. Defining the shape

expressed at the base mesh as

sBM = S(s,θ) (23)

(a) HD(s) (b) HR(s, θ)

Fig. 3 Visual representation of the Hessian matrix (eq. 17).

and noting that Σ−1s is a symmetric matrix, it follows

that

∂R

∂s
= 2Σ−1s (sBM − s0) . (24)

The remaining partial differentials for the pose pa-

rameters (θ) are all scalar values, and can be found by

applying the chain rule, as

∂R

∂θj
=

(
∂R

∂sBM

)T
∂sBM

∂θj
, j = 1, . . . , 4 with (25)

∂sBM

∂a
= s− sm,

∂sBM

∂b
=

[
sym − sy

sx − sxm

]
, (26)

∂sBM

∂tx
=

[
1v
0v

]
,

∂sBM

∂ty
=

[
0v
1v

]
, (27)

that can be easily taken from eq. 2. The symbols 0v
and 1v are v sized vectors with zeros and ones, re-

spectively. The sm was previously defined in eq. 2 and

stands for the mean shape center of mass. However,

from now on, we expand this representation into a 2v

vector as sm =

[
sxm
sym

]
, where sxm = 1v

(
1
v

∑v
i sx0i

)
and

sym = 1v
(
1
v

∑v
i sy0i

)
are vectorized versions of the 2D

coordinates of center of mass.

In short, evaluating ∇R(s,θ) only involves a few

computations using eq. 24 that afterwards becomes con-

stant to use in eq. 25. Moreover, Σ−1s , sm, ∂sBM

∂tx
and

∂sBM

∂ty
can be precomputed.

3.4 Hessian of the Data Term

Evaluating the Hessian of the data term follows a sim-

ilar process as before in section 3.2, only with a few

more partial differentials. For instance, computing ∂2hi
∂x2
i

requires using eq. 5 with g being the second order dif-

ferential of a Gaussian w.r.t. xi

∂2(−g)

∂x2i
=

(
1

σ2
h

− x2i
σ4
h

)
exp

(
−
(
x2i + y2i

)
2σ2

h

)
, (28)
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similarly for ∂2hi
∂y2i

∂2(−g)

∂y2i
=

(
1

σ2
h

− y2i
σ4
h

)
exp

(
−
(
x2i + y2i

)
2σ2

h

)
, (29)

and the mixed partials (equal by the Schwarz’ theorem)

∂2(−g)

∂xi∂yi
=
∂2(−g)

∂yi∂xi
=
xiyi
σ4
h

exp

(
−
(
x2i + y2i

)
2σ2

h

)
. (30)

In general, the (i, j) element of the Hessian matrix

(data part) is given by

HDij (s) = ITi
∂2hj
∂si∂sj

. (31)

These 2nd order partial differentials are only non zero
at the main diagonal and at two other smaller diagonals
(when i = j + v or j = i + v, which are identical due
to equality of mixed partials), see figure 3(a). Formally,
this Hessian term can be written as

HD(s) =


diag

(
ITi

∂2hi
∂x2

i

)
diag

(
ITi

∂2hi
∂xi∂yi

)
0v×4

diag
(
ITi

∂2hi
∂yi∂xi

)
diag

(
ITi

∂2hi
∂y2

i

)
0v×4

04×v 04×v 04×4

 . (32)

Note that only (2v + v) dot products between image

patches and (precomputed) filters
∂2hj
∂si∂sj

are required

to fully estimate HD(s).

3.5 Hessian of the Regularization Term

Following the previous section 3.3, finding HR(s,θ) only

requires to use the chain-rule for higher dimensions

(also known as the Faà di Bruno’s formula (Jacobs,

2014)) which gives us (rearranging the terms to avoid

summations)

∂2R

∂α∂β
=

(
∂sBM

∂α

)T
∂2R

∂s2BM

∂sBM

∂β
+

(
∂2sBM

∂α∂β

)T
∂R

∂sBM

(33)

where α, β represent any pair of the parameters of the

set {{xi}v1, {yi}v1, a, b, tx, ty}.
The 2nd partial differential w.r.t. the base mesh (eq.

23) results in

∂2R

∂s2BM

= 2Σ−1s . (34)

Defining δi to be a v-dimensional vector filled with

zeros, except with a scalar of 1 over the ith element

Precompute: Shape model (s0, Σs) and detectors1

partial gradients
{
∂hi
∂xi

, ∂hi
∂yi

, ∂
2hi
∂x2

i

, ∂
2hi
∂y2

i

, ∂
2hi

∂xiyi

}v
1

Define the combined parameters vector p =
[
sT θT

]T
2

Initial estimate for θ(0) and s(0) = s0 (mean shape).3

repeat4

Warp image into the base mesh I(.)→ S−1(I(.), θ)5

for Landmark i = 1 to v do6

Sample local region (at si) Ii ≡ S−1(I(si), θ)7

Compute data gradient (at base mesh):8

∇D(si) =

[
ITi

∂hi

∂xi
ITi

∂hi

∂yi

]
Compute data Hessian:9

HD(si) =

 I
T
i

∂2hi

∂x2i
ITi

∂2hi

∂xiyi

ITi
∂2hi

∂yixi
ITi

∂2hi

∂y2i


end10

Compute gradient of the regularization term ∇R11

Compute Hessian of the regularization term HR12

∇f (s, θ) = ∇D(s) + λ1∇R(s, θ) (overall gradient)13

Hf (s, θ) = HD(s) + λ1HR(s, θ) (overall Hessian)14

Newton step: p(τ+1) ← p(τ) − γH−1
f ∇f (s, θ)15

until ||p(τ)− p(τ−1)|| ≤ ε or max. iterations reached ;16

Algorithm 1: Gradient Shape Model (GSM) 2D

fitting algorithm.

location, the remaining partial differentials required to

fully compute eq. 33 are given by

∂sBM

∂xi
=

[
a δi
b δi

]
,

∂sBM

∂yi
=

[
−b δi
a δi

]
, (35)

∂s2BM

∂xi∂a
=

[
δi
0v

]
,

∂s2BM

∂yi∂a
=

[
0v
δi

]
, (36)

∂s2BM

∂xi∂b
=

[
0v
δi

]
,

∂s2BM

∂yi∂b
=

[
−δi
0v

]
, (37)

∂s2BM

∂xi∂tx
= 02v,

∂s2BM

∂yi∂ty
= 02v. (38)

Like before, the figure 3(b) provides a visual repre-

sentation for HR(s,θ).

In closure, we point out to the algorithm box 1

that describe step-by-step details of the GSM fitting

method. In short, the training stage (very similar to a

CLM) only requires to evaluate the mean shape, the

full shape covariance (after a Procrutes Analysis) and

the 1st and 2nd order partial gradients for each local de-

tector (which needs warping of every training image).

Fitting a GSM only requires image warping and a few

dot products to estimate both the gradient and the Hes-

sian. All gradient terms are defined in the main paper,

except for some details in the Hessian of the regular-

ization term HR which appears below in the appendix

section.
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4 Combined 2D+3D GSM

Face alignment using 3D shape data is always prefer-

able, in the sense that it has the potential to deliver

more accurate solutions. The main reason for this lies

in the fact that a projection of a 3D model can produce

a more feasible realizable shape when compared to a

pure 2D model (Xiao et al, 2004a). Moreover, 3D data

can be easily retrieved using Non-Rigid Structure from

Motion (NRSfM) methods (Xiao et al, 2004b) (Akhter

et al, 2008).

Remarkably, fitting with a 3D model just extends

the formulation introduced in section 3 by adding two

additional constrains

f3D = f(s,θ) + λ2(s− s0)TΣ−1s (s− s0) + λ3‖r‖2. (39)

A 3D shape is now represented by the 3v vector s =

(x1, . . . , xv, y1. . . . , yv, z1, . . . , zv)
T

. The first constraint,

coupled with the λ2 weight, is intended to penalize large

3D shape deformations. It acts like before in the 2D

case. The projection between the 3D model and the 2D

is included in the last constraint, by the 2v ’residual’

vector r, where λ3 is set to be a hard constant, linking

the two models together

r = s− σ
(
ix iy iz
jx jy jz

)
︸ ︷︷ ︸

Ro

⊗Iv s−
(
ox
oy

)
⊗ 1v. (40)

In eq. 40, P = σRo is the scaled orthographic projec-

tion matrix, (ox, oy) are the camera offsets, the symbol

⊗ is the Kronecker product and Iv is an v dimensional

identity matrix. The camera pose is updated (using a

first order linearization) according to

Ro ← Ro

 1 −∆θz ∆θy
∆θz 1 −∆θx
−∆θy ∆θx 1

 (41)

where enforcing orthonormality on Ro is required.

The extended optimization now operates over the

full set of parameters (s,θ, s, σ,∆θx, ∆θy, ∆θz, ox, oy)T ,

where the extended Jacobian becomes

Jf3D = ∇f (s,θ) + λ2∇R3D(s) + 2λ3r
T∇r (42)

and the extended Hessian follows the same structure

Hf3D = Hf (s,θ) + λ2HR3D(s) + 2λ3∇rT∇r. (43)

The gradient of the 3D regularization term is

∇R3D(s) =
[
02v+4 2Σ−1s (s− s0) 06

]T
(44)

and the gradient of the 3D to 2D projection

∇r =
[
∂r
∂s

∂r
∂θ

∂r
∂s

∂r
∂σ

∂r
∂∆θx

∂r
∂∆θy

∂r
∂∆θz

∂r
∂ox

∂r
∂oy

]T
. (45)

Precompute: Shape model’s (s0, Σs, s0, Σs) and1

detectors gradients
{
∂hi
∂xi

, ∂hi
∂yi

, ∂
2hi
∂x2

i

, ∂
2hi
∂y2

i

, ∂
2hi

∂xiyi

}v
1

Define the extended parameters vector2

p =
[
sT θT sT σ ∆θx ∆θy ∆θz ox oy

]T
Initial estimate for θ(0), σ(0), R

(0)
o , o

(0)
x and o

(0)
y3

(s(0) = s0, s(0) = s0, ∆θx = 0, ∆θy = 0, ∆θz = 0)
repeat4

Warp image into the base mesh I(.)→ S−1(I(.), θ)5

Evaluate 3D to 2D projection error6

r = s− (σRo)⊗ Iv s−
(
ox
oy

)
⊗ 1v

for Landmark i = 1 to v do7

Sample local region (at si) Ii ≡ S−1(I(si), θ)8

Compute Data gradient (at base mesh):9

∇D(si) =

[
ITi

∂hi

∂xi
ITi

∂hi

∂yi

]
Compute Data Hessian:10

HD(si) =

 I
T
i

∂2hi

∂x2i
ITi

∂2hi

∂xiyi

ITi
∂2hi

∂yixi
ITi

∂2hi

∂y2i


end11

Compute the overall Jacobian: Jf3D =12

∇D(s) + λ1∇R(s, θ) + λ2∇R3D(s) + 2λ3rT∇r
Compute the overall Hessian: Hf3D =13

HD(s) + λ1HR(s, θ) + λ2HR3D(s) + 2λ3∇rT∇r
Newton step: p(τ+1) ← p(τ) − γH−1

f3DJf3D14

Update camera’s rotation matrix15

Ro ← Ro

 1 −∆θz ∆θy
∆θz 1 −∆θx
−∆θy ∆θx 1


Enforce orthonormality constraints16

Ro = UVT ← [U,S,V] = svd(Ro)
until ||p(τ)− p(τ−1)|| ≤ ε or max. iterations reached ;17

Algorithm 2: Gradient Shape Model (GSM)

2D+3D algorithm.

Please refer to the appendix section where the miss-

ing partial differentials (∇r and HR3D) are defined.

The algorithm box 2 provides step-by-step algorith-

mic details of the GSM 2D+3D approach. In summary,

fitting/aligning a GSM requires image warping, sam-

pling each local region once, getting an estimate for the

gradient and the Hessian (equivalent to one dot prod-

uct per landmark), and applying a standard Newton

update. The combined 2D+3D GSM additionally re-

quires a measure of the 3D to 2D projection error, their

gradients (again simple dot products), and enforcing or-

thonormality in the camera rotation vectors.

5 Cascade Regression GSM

In general, the cascade regression framework aims to

learn a succession of regression matrices {Rk}K1 that,

when applied from a initial parameters estimate p0, it
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converges into a optimal state (the training set ground

truth), according to

pk = pk−1 + Rk−1f(pk−1) +βk−1, k = 1, . . . ,K (46)

where, for the sake of notation, the optimization pa-

rameters are now redefined to p =
[
sT θT

]T
(the pre-

vious GSM combined set). Note that this re-formulation

breaks down the previous assumption of a linear shape

model (the control parameters now follow a nonpara-

metric representation). Still regarding eq. 46, the f(p)

denotes feature extraction (L × L × v local regions all

concatenated into a single vector) at the landmarks lo-

cation generated by the shape parameters, βk repre-

sents a bias term, the index k represents a cascade level

and K is the total number of levels. Note that each

regression matrix Rk relates the extracted features to

additive updates (corrections) to be made to the pa-

rameters, in a simple sequential chain.

Following the SDM (Xiong and De la Torre, 2014)

framework for cascade optimization, learning each re-

gression step can be obtained by minimizing the ex-

pected loss between the predicted and the optimal pa-

rameters displacement under many possible initializa-

tions

arg min
Rk

N∑
Il

∫
p(plk)

(
∆plk + Rkf(p

l
k)
)2
∂plk (47)

where ∆plk = pgt−plk is the difference between the dis-

turbed parameter and the ground truth (the regression

labels), once more f(plk) represents image features ex-

tracted at pk and N is the number of training images.

Note that the bias term (βk) was omitted because it can

be absolved into an additional column of the regression

matrix.

Assuming that plk is drawn from a Normal distri-

bution (capturing the variance of the initial estimate

provided by the face detector), the previous optimiza-

tion 47 can be approximated by the discrete form

arg min
Rk

N∑
Il

M∑
j=1

(∆pk + Rkf(pk))
2

+ λ4‖Rk‖2 (48)

where M is the number of perturbations / simulations.

The previous, in fact, extends the initially proposed L2

regression into ridge regression where λ4 is the regular-

ization parameter.

The solution of optimization 48 takes the form of

Rk =
(
FTF + λ4I

)−1
FT∆pk (49)

where F is a data matrix holding all accumulated ex-

tracted features (by rows) and I is an identity matrix

with appropriate dimensions.

Precompute: Shape model (s0), detector partial1

gradients
{
∂hi
∂xi

, ∂hi
∂yi

, ∂
2hi
∂x2

i

, ∂
2hi
∂y2

i

, ∂
2hi

∂xiyi

}v
1

and the

sequence of regression matrices {Rk}K1
Define the combined parameters vector p =

[
sT θT

]T
2

Initial estimate for θ(0) and s(0) = s0 (mean shape).3

for cascade k = 1 to K do4

Warp image into the base mesh I(.)→ S−1(I(.), θ)5

for Landmark i = 1 to v do6

Sample local region (at si) Ii ≡ S−1(I(si), θ)7

Compute correlation (centred) ci(si) = ITi hi8

Compute data gradient ∇Di
(si)9

Compute data Hessian H̃Di
(si)10

end11

f =
[
c(s) ∇D(s)T H̃D(s)T

]T
12

Cascade update step pk+1 ← pk + Rkf13

end14

Algorithm 3: Gradient Shape Model - Cascade

Regression (GSM-CR) fitting algorithm.

The data matrix is an extremely large data structure

as it holds feature vectors taken from every image and

every perturbation trial, making it (very) difficult to

train with regular desktop machines on large datasets

(say with more than a few hundreds of images). For-

tunately, we can take advantage of the structure of the

GSM local detectors and make use of its efficient way to

extract features. Instead of locally computing the fea-

tures like HoG (Dalal and Triggs, 2005) or SIFT (Lowe,

2004) as in the original SDM formulation, we propose

to use

f =
[
IT1 h1 . . . ITv hv ∇D(s)T H̃D(s)T

]T
(50)

which is only a 6v dimensional vector (instead of a large

concatenation of data given by the vectorized features

of the local support regions of all landmarks). This rep-

resentation holds a measure of alignment score (equiv-

alent to the CLM’s data term) combined with its direc-

tional gradients and Hessian terms. The initial v ele-

ments represent the (centred) correlation at each land-

mark location si, the ∇D(si) =
(
ITi ∂hi

∂xi
, ITi ∂hi

∂yi

)
is the

gradient of the data term defined in section 3.2 and,

similarly, the H̃D(si) =
(
ITi ∂2hi

∂x2
i
, ITi ∂2hi

∂y2i
, ITi ∂2hi

∂xiyi

)
are

the Hessian data terms (section 3.4). In the last, we are

just considering the vectorized versions of the ’indepen-

dent’ second order gradients.

This modification has a number of advantages, as it

allows to drastically increase the density of virtual sam-

ples (M) improving on the estimation of each regression

matrix Rk (i.e. eqs 47 and 48 can become more close).

Additionally, it does not require a low dimensional re-

duction step (which usually is the bottleneck in the cas-

cade learning process), hence it becomes faster to train.
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Initial estimate for all virtual samples pij01

(i = 1, . . . , N images; j = 1, . . . ,M virtual samples)
for cascade k = 1 to K do2

Estimate noise r = std(pijk − pgtk )3

for image i = 1 to N do4

for perturbation j = 1 to M do5

Add noise to virtual sample6

pijk = pijk + ν, ν ∼ N (0, r)
Shape deviation from ground truth7

∆pk = pgtk − pijk
Warp image into the base mesh8

I(.)→ S−1(I(.),pijk )
for Landmark l = 1 to v do9

Sample local region Il ≡ S−1(Ii,p
ij
k )10

Compute correlation cl(p
ij
k ) = ITl hi11

Compute data gradient ∇Dl
(pijk )12

Compute data Hessian H̃Dl
(pijk )13

end14

f =
[
c(pijk ) ∇D(pijk )T H̃D(pijk )T

]T
15

Hold feature data Fij = f16

end17

Regression Rk =
(
FTF + λ4I

)−1
FT∆pk18

end19

Cascade parameters update pk+1 ← pk + RkF20

end21

Algorithm 4: Learning a Gradient Shape Model

- Cascade Regression (GSM-CR).

In summary, the algorithm 3 highlights the step-by-

step fitting procedure of the GSM-CR approach. Fitting

such a model simply consists of reusing eq. 46, by eval-

uating the GSM gradient features at a given location

and obtaining its updates by regression.

Regarding the learning of a GSM-CR instance, it

follows a standard procedure of training a sequential

cascade with just some modifications at the feature ex-

traction. The entire procedure is detailed in the algo-

rithm box 4.

In the training stage the perturbation variables (de-

scribed as ’virtual samples’) are represented as pijk where

the k subscript refers to the cascade level and the super-

scripts refer to the jth perturbation w.r.t. the ith image.

Note that there are M virtual samples for each one of

the N training images. Initially a face detector is used

to roughly estimate the 2D pose parameters (assigning

starting values to every virtual sample). Afterwards the

main cascade level loops between: computing the pa-

rameters deviation from the ground truth; disturb all

virtual samples; evaluate the modified feature vector

(eq. 50); find the current regression matrix Rk (eq. 49)

and finally, update the virtual samples to the next level.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4 Facial landmark’s configuration in each dataset. Each
column displays a set of landmarks: (a) IMM with the original
set of v = 58 landmarks, (b) IMM with v = 45 (without face
out boundary), (c) XM2VTS v = 68, (d) XM2VTS v = 53,
(e) LFPW v = 68, (f) LFPW v = 51 and (g) LFW v = 10.
Both HELEN and 300W follow the same format than LFPW.

6 Evaluation Results

6.1 Datasets

The performance evaluation experiments was conducted

on several standard databases:

1. The IMM (Nordstrom et al, 2004) database consists

of 240 annotated images of 40 different human faces

presenting different head poses, illumination, and

facial expression (58 landmarks).

2. The XM2VTS (Messer et al, 1999) database has

2360 images of frontal faces taken from 295 subjects

(68 landmarks). The XM2VTS mainly focuses on

variations in identity, nevertheless, it exhibits large

diversity in appearance due to facial hair, glasses,

ethnicity and other subtle changes.

3. The Labeled Faces in the Wild (LFW) (Huang et al,

2007) database has more than 13000 images (10

landmarks) taken ’in the wild’. Meaning that the

images were taken in unconstrained scenarios un-

der pose, lighting, focus, facial expression and oc-

clusions changes.

4. The LFPW (Belhumeur et al, 2011) database, also

an ’in the wild set’, contains 811 (train) and 224

(test) images collected over web searches (google,

flickr and yahoo). The original release has 29 land-

marks, but we are using the 68 landmarks annota-

tion provided by (Sagonas et al, 2013a).

5. The HELEN (Le et al, 2012) database holds 2000

(train) plus 330 (test) images taken from the flickr

web site. Like before, the initial release provides 194

landmarks but for consistency we are using the same

68 landmarks format than LFPW.

6. The 300W (Sagonas et al, 2016) (Sagonas et al,

2013a) (Sagonas et al, 2013b) supplies two subsets,
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each holding 300 images taken in indoor and out-

door scenarios, respectively. In our experiments we

combined both sets and established an overall test

set with 600 images. The training set of this database

is defined as standard: a combination of the AFW

(Zhu and Ramanan, 2012) database (337 images),

the HELEN, the iBug (Sagonas et al, 2013a) (135

images), the LFPW and the XM2VTS set, making

a total of 6197 images (68 landmarks).

An overview between the different landmark’s anno-

tation formats can be seen in figure 4. In this section,

each dataset was additionally (and independently) eval-

uated with a slight less number of landmarks, by remov-

ing the boundary points over the face outer contour.

This was made because of the increasing difficulty in

localizing, with accuracy, those landmark points. Still

regarding landmark formats, it is important to mention

that the LFPW, the HELEN and the 300W datasets all

share the same configuration. Credits to (Sagonas et al,

2016) (Sagonas et al, 2013a).

Before presenting the evaluation results, it is worth

comparing the relative complexity in aligning each database.

Following (Belhumeur et al, 2011), a facial asymmetry

derived metric was used to measure the degree of diffi-

culty of each image. Such asymmetry metric consists of

reflecting natural symmetric features (such as the eyes

out corners and mouth corners) about a vertical line

passing the nose centre and then measure the (normal-

ized) average distances between them. According, this

metric holds a lower value (close to zero) in near frontal

faces and higher values otherwise.

The figure 5(a) shows the described facial asym-
metry metric gathered over the evaluated sets. It can

be seen that XM2VTS holds more symmetric images

(more frontal), and by other hand, the remaining ’in

the wild’ sets (LFPW, HELEN and 300W) have in-

deed more challenging images with a lot more 3D pose

variability, therefore more difficult to align (more asym-

metric images scattered across the full set).

6.2 Evaluation Procedure

Due to the intrinsic nature of the proposed models, the

main experiments was split in two parts: (1) evaluate

the GSM against CLM like approaches and (2) eval-

uate the GSM-CR against cascaded regression based

methods. Later on, for the sake of completeness, our

cascaded regression approach is compared against Con-

volutional Neural Networks (CNNs) based methods.

0 0.2 0.4 0.6 0.8

Asymmetry Error Metric (Inter-Ocular Normalized)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

p
o

rt
io

n
 o

f 
Im

a
g

e
s

Facial Asymmetry

IMM
XM2VTS
LFW
LFPW
Helen
300W

(a) Face asymmetry

0 0.1 0.2 0.3 0.4 0.5
5.5

6

6.5

7

7.5

8

A
v
e
ra

g
e
 R

M
S

 E
rr

o
r

(b) λ1 evaluation

Fig. 5 (a) Face asymmetry in the datasets. (b) Evaluation
of the regularization parameter λ1.

6.2.1 GSM vs CLMs

This section puts to the test the proposed GSM and

GSM 2D+3D variants against CLM alignment solu-

tions, in particular, ASM (Cootes et al, 1995), CQF

(Wang et al, 2008), SCMS (Saragih et al, 2010) and

BCLM (Martins et al, 2012). It is important to stress

that we made a careful evaluation ensuring that all eval-

uated techniques use the same kind of local detector, all

methods are regularized by the same shape model and

they always start from the same initial estimate. Note

that, to be fair, the GSM should be pitted against com-

parable CLM baselines. According, the cascade regres-

sion methods should not be directly compared in this

section, as they operate using a multi-stage framework

and capture the variance of the face detector.

Most of the datasets described in the previous sec-

tion, already define the train and the test data (LFPW,

HELEN and 300W). Regarding the remaining sets: the

XM2VTS and LFW were split into 70/30 train/test

portions and the IMM (the smallest set) was trained

with 511 images collected from 40 individuals at our in-

stitution (following the same landmark annotation for-

mat with 58 points).

In all cases, the nonrigid parameters started from

the mean shape (s = s0 in GSM and bs = 0n in

CLMs), the pose parameters θ were initialized by re-

gression from a face detector (Viola and Jones, 2002)

output and all models were fitted until convergence up

to a maximum of 30 iterations. The shape initialization

was also included in the evaluation charts.

The local detectors, both in GSM and CLMs, were

built from grey level features with the L × L support

region size of (46 × 46). The same standard deviation

σh = 5 and regularization ε = 10−4 were used. The

GSM results with MCCF detectors built from HoG fea-

tures have L = 46, cell size = 3 and σh = 1.5. Addition-

ally, the CLM methods that rely in Kernel Density Es-

timation (KDE) approximations of the data term use a
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kernel bandwidth schedule of σ2
h = (15, 10, 5, 2) (which

applies to SCMS, BCLM).

In GSM, the overall regularization weights λ1 was

subject to evaluation to find the best value. The figure

5(b) shows the average Root Mean Squared (RMS) er-

ror in a randomly selected test set (1000/250 of train/test

images taken from both LFPW and HELEN databases)

for several values of λ1. The minimal value of λ1 = 0.04

was found and used afterwards. In the GSM 2D+3D

method, λ2 is set to be equal to λ1 and λ3 = 10 (es-

tablished to be a hard constraint). The 3D data, used

in GSM 2D+3D, was retrieved by applying NRSfM

(Akhter et al, 2008) in the training shape annotations

of each corresponding dataset.

The standard evaluation procedure quantifies the

alignment error by the mean error per landmark as frac-

tion of the inter-ocular distance (measured between the

outer corners of the eyes), deyes, as

em(s) =
1

v deyes

v∑
i=1

‖si − sgti ‖ (51)

where sgti is the location of ith landmark in the ground

truth annotation.

Figure 6 shows the fitting performance curves, using

the normalized inter-ocular error metric for the IMM,

XM2VTS, LFPW, LFW, HELEN and 300W datasets,

respectively. These curves are cumulative distribution

functions that show the percentage of faces that achieved

convergence with a given error amount. The table bel-

low in the same figure provides a qualitative measure

of the results, which is defined as the ratio, in percent-

age, between the area under fitting curve and the total

area of a ground truth curve (a step curve). Likewise,

the figure 7 shows another set of fitting curves taken

by re-training all models2, now with a reduced set of

landmarks (discarding the outer contour points of the

face, recall the figure 4).

The results show, firstly, that the relative perfor-

mance between CLMs methods behaves as expected.

Ranking from lower to higher accuracy we get: ASM,

CQF, SCMS and BCLM. In some cases the ASM per-

forms better than CQF (in the LFW, HELEN and 300W),

the reason being the excellent overall performance of

the MCCF filter. The CQF has a tendency to over-

smooth the response maps, SCMS outperforms the pre-

vious mostly because of the high accuracy provided by

the mean-shift algorithm and finally, BCLM improves

on the results of SCMS due to the enhanced parameter

update. Regarding GSM, the experiments show that the

technique has a comparable performance to BCLM and,

2 The LFW dataset was excluded due the lack of landmark
annotations in the face outer region.

in some cases, even performs better (LFW & XM2VTS

sets). This happens because GSM optimize the land-

marks locations directly using a more capable shape

model (a full Gaussian with a proper regularization in-

stead of a low dimensional representation).

We remark that CLMs rely in a exhaustive local

search while GSM use a gradient based search. In the-

ory, exhaustive search would be better but much more

computational expensive. In practice, however, the re-

sults do not show a large disparity. In fact, in some

cases, gradient search achieved better results (although

with an improved regularization). Finally, and as ex-

pected, the enhanced GSM 2D+3D method improves

over the 2D variant, and the HoG based detectors fur-

ther improve on the overall performances.

6.2.2 GSM-CR vs Cascade Regression

This section evaluates the GSM-CR against other pop-

ular cascade regression based methodologies. In prac-

tice, we make comparisons against the Supervised De-

scent Method (SDM) (Xiong and De la Torre, 2013),

the Project-Out Cascaded Regression (PO-CR) (Tz-

imiropoulos, 2015) and the Explicit Shape Regression

(ESR) (Cao et al, 2012). Additionally we also include

two other approaches (not cascade regression based),

a simplified version of the Gauss-Newton Deformable

Parts Model (GN-DPM) (Tzimiropoulos and Pantic,

2014) that is optimized using the Project-Out Inverse

Compositional (POIC) (Baker and Matthews, 2001) strat-

egy and the Tree-Model (TM) (Zhu and Ramanan, 2012).

Like before, the all mentioned methods use our own im-

plementations (except for the ESR (Guo, 2014) and TM

(Zhu and Ramanan, 2012) cases).

The same local patch settings were used as in the

previous section (HoG features, L = 46, cell size = 3,

σh = 1.5). The number of cascade levels was estab-

lished to be equal to K = 5. The regression proce-

dure has some computational memory concerns regard-

ing the number of perturbations per image (M). Since

the data matrix F (in eq. 49) needs to collect all fea-

ture samples, it can be intractable to manage for a large

number of perturbations, specially if the dataset is to

large (or have to many landmarks). In our experiments

we were able to learn SDM and PO-CR models for the

LFPW, XM2VTS and IMM databases using M = 20.

In the case of the LFW M = 10, and for HELEN and

300W M = 5. These selected values are related to the

maximum available memory in our test machine (note

that the required memory grows linearly by a factor

MN , where N is the number of training images). In

contrast, our proposed GSM-CR allowed to estimate
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(l)

(%) Area under cdf curve / total area IMM XM2VTS LFPW LFW HELEN 300W

Initial Estimate (Viola and Jones, 2002) 48.0 60.2 31.8 49.7 26.9 14.5
ASM (Cootes et al, 1995) 54.8 65.2 42.4 60.4 36.2 19.3
CQF (Wang et al, 2008) 57.0 67.4 44.5 60.0 35.0 18.7
SCMS (Saragih et al, 2010) 60.5 69.1 47.5 64.2 39.1 21.0
BCLM (Martins et al, 2016) 64.2 71.3 52.3 65.4 44.7 23.8
GSM (our method) (Grey / HoG features) 62.7/64.6 71.9/73.6 51.0/55.1 67.3/71.2 42.7/47.6 22.9/26.2
GSM 2D+3D (our method) (Grey / HoG features) 64.2/67.5 74.1/74.9 53.6/56.5 68.5/72.0 46.2/49.2 24.1/27.2
TM (Zhu and Ramanan, 2012) (p146) 45.1 46.5 42.2 47.1 40.5 22.8
ESR (Cao et al, 2012) 77.3 79.9 61.4 71.5 56.1 32.8
GN-DPM (Tzimiropoulos and Pantic, 2014) (POIC) 72.5 74.4 59.5 60.7 52.5 29.8
SDM (Xiong and De la Torre, 2013) 79.2 81.0 63.0 73.3 59.0 35.2
PO-CR (Tzimiropoulos, 2015) 80.4 82.2 65.4 75.7 60.7 37.5
GSM-CR (our method - HoG features) 82.1 82.6 66.6 76.8 62.9 39.5

Fig. 6 Fitting performance curves in IMM, XM2VTS, LFPW, LFW, HELEN and 300W sets. The evaluation of ’GSM vs
CLMs’ and ’GSM-CR vs cascade regression methods’ appears separately (two charts for each database - one on top of another).
The table bellow gives a measure of the ratio between the area under the curve and the total area (in percentage).
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(j)

(%) Area under cdf curve / total area IMM XM2VTS LFPW HELEN 300W

Initial Estimate (Viola and Jones, 2002) 62.1 64.0 43.8 38.5 25.2
ASM (Cootes et al, 1995) 72.8 75.8 56.8 50.8 33.2
CQF (Wang et al, 2008) 68.7 75.1 56.6 50.0 32.5
SCMS (Saragih et al, 2010) 73.6 76.8 60.2 53.8 35.4
BCLM (Martins et al, 2016) 75.5 78.7 63.2 55.8 37.1
GSM (our method) (Grey / HoG features) 75.3/76.0 79.4/80.8 63.0/67.0 55.7/60.2 36.2/38.6
GSM 2D+3D (our method) (Grey / HoG features) 76.3/78.4 80.3/81.4 64.4/68.4 57.6/62.1 37.3/39.3
TM (Zhu and Ramanan, 2012) (p146) 49.7 55.0 46.6 45.8 29.1
ESR (Cao et al, 2012) 86.2 82.2 67.6 65.0 40.7
GN-DPM (Tzimiropoulos and Pantic, 2014) (POIC) 84.1 79.5 67.7 61.5 39.8
SDM (Xiong and De la Torre, 2013) 85.9 83.5 68.2 65.8 42.3
PO-CR (Tzimiropoulos, 2015) 86.8 84.6 70.0 68.2 45.2
GSM-CR (our method - HoG features) 88.1 85.4 73.1 70.2 46.9

Fig. 7 Fitting performance curves in IMM, XM2VTS, LFPW, HELEN and 300W sets having a reduced set of landmarks
(removing the face contour boundary - see figure 4). Like before, separate charts are presented for GSM / GSM-CR evaluations,
and the table bellow gives a measure of the area under the curve ratio.
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each regression step using M = 40 in all datasets (since

it uses a considerable lower dimensional feature vector).

The fitting performance curves for these experiments

are shown in figures 6 and 7, where the later refers to

the sets with reduced landmarks. Looking at the re-

sults, and once more ranking from lower to higher per-

formance we get: TM, GN-DPM, ESR, SDM, PO-CR

and GSM-CR. As pointed out, the first two, are not

really cascade regressing methods. The TM was mainly

proposed as a detector and its lower accuracy results

from the simple regularization used (made for fast in-

ference). The GN-DPM adds stronger regularization (a

full shape model), and in some sense, can be seen as the

PO-CR without the cascade framework. Regarding the

overall fitting performance on cascade based methods,

the SDM performed slightly better than ESR, the PO-

CR better that SDM (as expected due to underlying

shape structure included in the regression), and finally

GSM-CR was able to outperform all the previous (due

to the denser regression perturbations).

In closure, figure 9 shows some qualitative examples

of GSM-CR fitting taken from the LFPW, HELEN and

300W databases.

6.2.3 GSM-CR vs CNNs

For reference, this section presents a comparison be-

tween our best ranking model (naturally, the cascaded

regression version) and some Convolutional Neural Net-

works (CNNs) based techniques. The proposed method

GSM-CR is here evaluated against the Tasks-Constrained

Deep Convolutional Network (TCDCN) (Zhang et al,

2014b), the 2D version of the Face Alignment Network
(FAN) (Bulat and Tzimiropoulos, 2017b), the binarized

Hourglass-like convolutional network (referred here as

BFAN) (Bulat and Tzimiropoulos, 2017a), the Convo-

lutional Experts Constrained Local Model (CE-CLM)

(Zadeh et al, 2017) and finally, the commercial solution

Face++ (Face++, 2018) (Huang et al, 2015).

Following the previous sections, the fitting perfor-

mance curves of these experiments in the IMM, XM2VTS,

LFPW, LFW, HELEN and 300W datasets are pre-

sented in figure 8. Like before, all these curves measure

the inter-ocular normalized error as expressed in eq. 51.

Briefly, the results show that the approaches Face++

and FAN take the lead in terms of fitting accuracy, fol-

lowed by CE-CLM and BFAN. Our technique (GSM-

CR) comes next, performing slightly better than TCDCN.

In general, and as expected, our method can only be

comparable with CNNs based approaches in smaller

datasets (p.e. in the LFPW and the IMM). On larger

sets, with more ’in the wild’ images (recall figure 5(a)),

our model has more difficulty to keep up (note that the

Table 1 Computational efficiency comparison (GSM vs
CLMs).

SCMS BCLM GSM GSM 2D+3D

Generate shape O(v n) O(v n) O(v) O(v)
Warp image O(m) O(m) O(m) O(m)

Compute data termO(vL2R2) O(vL2R2) O(vL2) O(vL2)
Local optimization O(vR4T ) O(vR4T ) — —
Evaluate Jacobian O(v n) — O(vL2) O(vL2 + v)
Compute Hessian O(n2v) — O(v2L2) O(v2L2 + v)
Invert the Hessian O(n3) — O(v3) O(v3)
Update parameters O(n) O(n3 + v2) O(v) O(v)
Running time (s) 10.454 10.943 0.282 0.303

results in the LFW set might be a bit misleading due

to the landmarks configuration that match strong im-

age features - check figure 4(g)). However, please keep

in mind that, in fairness, our approach should not be

directly compared against CNNs. The CNNs are in-

trinsically different, they optimize millions of param-

eters, include non-linear mappings between layers, re-

quire large amounts of training data and take a huge

amount of time to train (usually assisted by GPUs).

Our approach shares many of the advantages of CLMs,

its notably simpler than CNNs, requires far less mem-

ory, it trains in minutes and performs model fitting in

milliseconds (with regular CPU).

6.3 Computational Performance

This section presents a computational performance anal-

ysis between GSM vs CLMs and also GSM-CR vs cas-

cade regression based methods. As pointed out, the

GSM and CLMs have very similar learning steps, hence

similar learning times. The only difference comes down

to the ’amount’ of local detectors needed for each land-

mark, where the GSM requires five detector gradients

in total. Regarding the GSM-CR and the mentioned

cascade regression methods, they have similar fitting

costs (in general, by simply implementing the eq. 46).

The central discussion here, reduces to the com-

putational analysis of the GSM fitting stage and the

GSM-CR learning stage. Afterwards, it is shown an ex-

ecution time comparison (i.e. online fitting) between all

the mentioned methods in the evaluation section.

6.3.1 Fitting - GSM vs CLMs

Table 1 shows, in detail, a comparative view of the com-

putational cost of one iteration between the proposed

GSM and some state-of-the-art CLM strategies. The

mentioned parameters are v landmarks, n CLM param-

eters, m pixels in the base mesh, L× L local detectors

size, R×R CLM scan regions (convolution area) and T

is maximum number of mean-shift iterations (which is

related to the Kernel Density Estimator in the SCMS

and BCLM methods).
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(%) Area under cdf curve / total area IMM XM2VTS LFPW LFW HELEN 300W

Initial Estimate (Viola and Jones, 2002) 48.0 60.2 31.8 49.7 26.9 14.5
TCDCN (Zhang et al, 2014b) (Zhang et al, 2016) 76.7 77.4 61.1 68.7 63.2 41.1
Face++ (Face++, 2018) (Huang et al, 2015) 84.9 85.2 68.2 81.1 69.0 53.0
FAN (Bulat and Tzimiropoulos, 2017b) 82.9 84.6 64.8 76.1 67.2 53.6
BFAN (Bulat and Tzimiropoulos, 2017a) 81.0 82.1 63.7 71.2 63.7 51.7
CE-CLM (Zadeh et al, 2017) 77.3 81.8 68.6 78.5 65.0 46.9
GSM-CR (our method w/ HoG features) 82.1 82.6 66.6 76.8 62.9 39.5

Fig. 8 Evaluation against CNNs based methods. Following the previous structure, the presented graphics show the fitting
performance curves of IMM, XM2VTS, LFPW, LFW, HELEN and 300W datasets, respectively. The table below provides a
measure of the area under the curve (in percentage).

The reported running times use a non-parallel Mat-
Lab implementation with grey level features, v = 68,

n = 24, m = 44440, L = 41, R = 15 and T = 75. No-

tice the huge performance advantage of the GSM, being

up to 38.8× faster than BCLM. As pointed out before,

the key to GSM’s efficiency is the very fast evaluation

of the data term, avoiding the need of response maps.

6.3.2 Learning - GSM-CR vs Cascaded Regression

As described, the GSM-CR learning/training times is

an issue that deserves some attention. When compar-

ing the GSM-CR against other cascade regression ap-

proaches, a large gap in computational costs and mem-

ory requirements exists.

The table 2 shows a comparative view of the compu-

tational cost of one cascade step between the proposed

GSM-CR and two well established state-of-the-art ap-

proaches (SDM and PO-CR). The undefined parame-

ters c and D represent the numbers of appearance pa-

rameters (PO-CR) and the effective dimensions after

applying the low dimensional reduction (SDM), respec-

tively. The amount of regression perturbations is once

more represented as M .

From the algorithmic point of view (taking SDM

as an example), each cascade level requires to generate

shape perturbations, extracting and gathering features

in a data matrix, a dimensional reduction step and fi-

nally solving a regression problem. This means dealing

with data matrices (F in eq. 49) of size L2v × NM ,

making it very difficult to use regular PCs while learn-

ing with thousands of images. The same can be said

for PO-CR that follows a similar procedure (stacking

all features in a very large matrix, then estimating a

Jacobian by regression, removing the appearance ef-

fects with a Project-Out (Baker and Matthews, 2001)

step and estimate an ’overall’ regression matrix). On

the other hand, training a GSM-CR just involves to

manage data matrices with size 6v × NM , requiring

considerable less memory.
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Table 2 Computational efficiency comparison in learning a
single cascade level (GSM-CR vs cascade based methods).

SDM PO-CR GSM-CR

Compute std error O(Nv) O(Nn) O(Nv)
Feature extraction O(MNvL2) O(MNvL2) O(MNvL2)
Dim. reduction O((MvL2)2N+(MvL2)3) - -
Project-out app. - O(L2vn+cL2vn) -

Regression O(D3) O((MNvL2)3) O((MNv)3)
Update step O(NM) O(NM) O(NM)

Running time (s) 125.8 61.4 48.6

The reported times refer to a test run on a MatLab

implementation with just N = 100 images (taken from

the LFPW set), v = 68 landmarks, M = 20 pertur-

bations, L = 46 patch size, n = 27 shape parameters

(PO-CR), c = 417 appearance parameters (PO-CR)

and D = 2000 reduced dimensions (SDM). According,

and as described earlier, the GSM-CR is faster to train

(2.58× faster than SDM) and requires considerable less

computational resources.

6.3.3 Execution Times

The table 3 shows a comparative view of the execution

times of the techniques mentioned in the evaluation sec-

tion. Each table entry shows the average running time

of fitting one image, in a representative test set, for a

given algorithm (which in turn, was implemented in a

particular code environment). The table is organized by

similar classes of methods, i.e. CLMs, cascaded regres-

sion and CNNs. Once more we highlight that both GSM

and GSM 2D+3D should be compared against CLMs,

and similarity, GSM-CR should be compared against

other cascade regression techniques. The CNNs timing

results are just shown for reference.

In this experiment, each fitting algorithm uses the

same structural settings described in section 6.2. The

test set was chosen to be a subset of 100 images taken

from the LFPW test database. The hardware involved

was a PC holding a Intel Core i7-3930K (3.20GHz,

6 cores) CPU, 32GB RAM, 2 Nvidia graphics cards

(GeForce GTX Titan X and Tesla K40c) and running

Linux Fedora 25 OS. Most of the evaluated fitting algo-

rithms are based in implementations made by us (as in-

dicated in the table). Please note that, these implemen-

tations are MatLab based, unoptimized, non-parallel

and use only CPU hardware. The remaining techniques,

except ESR (Guo, 2014), consist of the corresponding

author’s supplied code.

The results show that both GSM and GSM-CR, as

expected, perform the fastest in their respective cat-

egories, i.e. the GSM is several times faster than any

CLM and the GSM-CR is marginally faster than the

cascaded regression techniques. Regarding the CNNs

timing results, note that the comparative performance

Table 3 Comparative view of the execution times of all the
evaluated techniques: CLMs, cascaded regression, our pro-
posed GSMs and CNNs. Each table entry shows the average
execution time (in a particular code environment) of fitting
an image in a subset of the LFPW database.

Code Environment Running Time (s) Notes

ASM MatLab? 9.86 Grey
CQF MatLab? 11.32 Grey
SCMS MatLab? 77.822 Grey
BCLM MatLab? 79.226 Grey
GSM MatLab? 1.981/2.919 Grey/HoG

GSM 2D+3D MatLab? 2.227/3.145 Grey/HoG
TM MatLab 6.414 HoG
ESR MatLab 17.052 Fern

GN-DPN MatLab? 1.801 HoG
SDM MatLab? 0.411 HoG

PO-CR MatLab? 0.348 HoG
GSM-CR MatLab? 0.295 HoG
TCDCN MatLab 3.675
Face++ Megvii Servers 0.195
FAN Python 9.530/3.489 CPU/GPU
BFAN Lua 0.0537 GPU

CE-CLM C++ 0.159
(?) Our implementation.

might be a bit misleading because some methods rely

heavy in both the GPUs that we have installed. Never-

theless, the GSM-CR can run faster than TCDCN (im-

plemented in similar code environment) and the FAN.

7 Conclusions

This paper introduces the Gradient Shape Model (GSM)

that aims to replace exhaustive local searches (convo-

lutions) with a fast gradient estimate in the CLM for-

mulation. The proposed approach considers two other

significant extensions: a 2D+3D combined model and a

cascade regression strategy.

In its basic form, the GSM is able to align/fit a

shape model by sampling each local region only once,

estimating a gradient direction (and Hessian terms) us-

ing a true analytical Newton update. The combined 2D

+ 3D GSM enhances the previous, by including a ad-

ditional 3D shape model to 2D projection constraint.

The cascade regression GSM approach, benefits of the

efficient feature data extraction, enforcing the sampling

density in the estimation of each each regression matrix.

All proposed techniques are evaluated in detail on

several standard datasets (IMM, XM2VTS, LFPW, LFW,

HELEN and 300W) and compared against state-of-the-

art CLM and CR methods. Several results are pre-

sented: (1) the proposed models match the performance

of leading CLM methods, while using only a fraction

of the computation; (2) the usage of a 3D constrained

search improves on the previous model; (3) the multidi-

mensional detectors further improve the accuracy and

(4) the cascade regression variant allow faster training

times (when compared with other cascade regression

methods) and it exhibits the best overall performance.
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Zadeh A, Baltrušaitis T, Morency LP (2017) Convo-

lutional experts constrained local model for facial

landmark detection. In: IEEE Computer Vision and

Pattern Recognition Workshop (CVPRW), 2nd Fa-

cial Landmark Localisation Competition

Zhang J, Shan S, Kan M, Chen X (2014a) Coarse-to-

fine auto-encoder networks (cfan) for real-time face

alignment. In: European Conference on Computer

Vision

Zhang Z, Luo P, Loy CC, Tang X (2014b) Facial land-

mark detection by deep multi-task learning. In: Eu-

ropean Conference on Computer Vision

Zhang Z, Luo P, Loy CC, Tang X (2016) Learning deep

representation for face alignment with auxiliary at-

tributes. IEEE Transactions on Pattern Analysis and

Machine Intelligence 38:918–930

Zhou E, Fan H, Cao Z, Jiang Y, Yin Q (2013a) Ex-

tensive facial landmark localization with coarse-to-

fine convolutional network cascade. In: IEEE Inter-

national Conference on Computer Vision Workshop,

300 Faces In-the-Wild Challenge (300-W)

Zhou F, Brandt J, Lin Z (2013b) Exemplar-based graph

matching for robust facial landmark localization. In:

IEEE International Conference on Computer Vision

Zhu S, Li C, Loy C, Tang X (2015) Face alignment by

coarse-to-fine shape searching. In: IEEE Conference

on Computer Vision and Pattern Recognition

Zhu X, Ramanan D (2012) Face detection, pose esti-

mation, and landmark localization in the wild. In:

IEEE Conference on Computer Vision and Pattern

Recognition



22 Pedro Martins et al.

Fig. 9 Fitting examples in the LFPW, HELEN and 300W databases (top three rows, middle rows and last three rows,
respectively) taken using the proposed GSM-CR technique.
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A Gradient Definitions

A.1 Hessian of the 2D Regularization Term (HR)

The Hessian of the 2D regularization term is a (2v+4) square
matrix of the form:

HR =
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(52)

where the main (2v×2v) sub-matrix (constant, therefore can
be precomputed) is

∂2R

∂s2
= 2Σ−1

s . (53)

The 2D pose diagonal terms are given by

∂2R

∂a2
=

(
∂sBM

∂a

)T ∂2R

∂s2BM

∂sBM

∂a

= 2 (s− sm)T Σ−1
s (s− sm) (54)

∂2R

∂b2
=

(
∂sBM

∂b

)T ∂2R

∂s2BM

∂sBM

∂b

= 2

(
sym − sy

sx − sxm

)T
Σ−1

s

(
sym − sy

sx − sxm

)
(55)

∂2R

∂t2x
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(
∂sBM

∂tx

)T ∂2R

∂s2BM

∂sBM

∂tx
= 2

(
1v
0v

)T
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s

(
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)
(56)

∂2R

∂t2y
=

(
∂sBM

∂ty

)T ∂2R

∂s2BM

∂sBM

∂ty
= 2

(
0v
1v

)T
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s

(
0v
1v

)
(57)

where 0v and 1v are v sized vectors filled with zeros and ones,
respectively. In the previous, sx and sy represent the x and
y components (v sized vectors) of the shape s. Additionally,
note that sm (2v expanded vector that defines the base mesh
centre of mass) is constant.

The 2D pose mixed terms are given by

∂2R

∂a∂b
=

∂2R
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= 2 (s− sm)Σ−1

s

(
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)
(58)
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s
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)
(59)
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= 2

(
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0v

)T
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s

(
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1v

)
. (63)

Finally, the remaining mixed terms, are

∂2R
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= 2
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)
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s

(
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. (69)

where δi is a v-dimensional vector filled with zeros, except
on a scalar of 1 at the ith element location.

A.2 Gradients of the 2D+3D Model

The gradient of the 3D regularization term, in eq. 42, is

∇R3D(s) =
[
02v+4 2Σ−1

s (s− s0) 06

]
. (70)

Recalling gradient of the 3D to 2D projection error, de-
fined by a (2v)× (2v + 4 + 3v + 6) matrix as

∇r =

[
∂r

∂s

∂r

∂θ

∂r

∂s

∂r

∂σ

∂r

∂∆θx

∂r

∂∆θy

∂r

∂∆θz

∂r

∂ox

∂r

∂oy

]
with

∂r

∂s
= I2v,

∂r

∂θ
= 02v,

∂r

∂s
= −P⊗Iv,

∂r

∂σ
= −Iv⊗Ro s,

∂r

∂∆θx
= Iv⊗

P

 0 0 0
0 0 −1
0 1 0

 s,
∂r

∂∆θy
= Iv⊗

P

 0 0 1
0 0 0
−1 0 0

 s,

∂r

∂∆θz
= Iv⊗

P

 0 −1 0
1 0 0
0 0 0

 s,
∂r

∂ox
=

(
−1v
0v

)
,

∂r

∂oy
=

(
0v
−1v

)
where In represents a n dimensional identity matrix and the
⊗ symbol is the Kronecker product.

Finally, the Hessian of the 3D shape regularization term
(in eq. 43) is a (2v + 4 + 3v + 6) square matrix given by

HR3D(s) =


02v 04 03v 06

02v 04 03v 06

02v 04 2Σ−1
s 06

02v 04 03v 06

 (71)

note that this matrix is constant, therefore, it can be precom-
puted.
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