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Abstract

The paper proposes a new method to perform foreground detection by means of back-
ground modeling using the tensor concept. Sometimes, statistical modelling directly on
image values is not enough to achieve a good discrimination. Thus the image may be
converted into a more information rich form, such as a tensor field, to yield latent dis-
criminating features. Taking into account the theoretically well-founded differential ge-
ometrical properties of the Riemannian manifold where tensors lie, we propose a new
approach for foreground detection on tensor field based on data modeling by means of
Gaussians mixtures directly on tensor domain. We introduced a online Kmeans approx-
imation of the Expectation Maximization algorithm to estimate the parameters based on
an Affine-Invariant metric. This metric has excellent theoretical properties but essentially
due to the space curvature the computational burden is high. We propose a novel Kmeans
algorithm based on a new family of metrics, called Log-Euclidean, in order to speed up
the process, while conserving the same theoretical properties. Contrary to the affine case,
we obtain a space with a null curvature. Hence, classical statistical tools usually reserved
to vectors are efficiently generalized to tensors in the Log-Euclidean framework. Theo-
retical aspects are presented and the Affine-Invariant and Log-Euclidean frameworks are
compared experimentally. From a practical point of view, results are similar to those of
the Affine-Invariant framework but are obtained much faster. Theoretic analysis and ex-
perimental results demonstrate the promise and effectiveness of the proposed framework.

1 Introduction
Foreground segmentation is the process that subdivides an image into regions of interest and
background. This task usually relies on the extraction of suitable features that are highly
discriminative. Most of the foreground detection techniques are based on intensity or color
features. However there are situations, where these features may not be distinct enough (e.g.
dynamic scenes). Texture is one of the most important features, therefore its consideration
can greatly improve image analysis. The structure tensor [4] [9] has been introduced for
such texture analysis providing a measure of the presence of edges and their orientation.
Over the years, a considerable number of background models for foreground detection have
been proposed. These models can be broadly classified into pixel-wise and block-wise.
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The pixel-wise models relie on the separation of statistical model for each pixel and the
pixel model is learned entirely from each pixel history. The background model usually can
be parametrically derived using a mixture of Gaussians or through Bayesian approaches [36]
[34] [33] [29]. Once the per-pixel model was derived, the likelihood of each incident pixel
color is calculated and labeled as belonging to the background or not. In situations where the
density that describe the pixel data is more complex and cannot be modeled parametrically,
the probability distribution of background model can be approached by non-parametric es-
timation methods [11] [35] [22]. In case of block-wise models, the background model of a
pixel depends not only on that pixel but also on the nearby pixels. These models consider
spatial information an essential element to understand the scene structure [25] [24] [31]. One
major disadvantage of these methods is that the boundary of the foreground objects cannot
be delineated exactly. In recent years researchers have been concentrating more on incor-
porating spatial aspect into background modeling to take advantage of the correlation that
exists between neighbouring pixels. Thus the background model of a pixel also depends on
its neighbors [32] [28][3]. Some researchers have also used texture based methods to incor-
porate spatial aspect into background models. Spatial variation information, such as gradient
feature, helps improve the realiability of structure change detection [15] [16] [37] [14] [38].

The tensor space does not form a vector space, thus standard linear statistical techniques
do not apply. We propose to account for the Riemannian geometry of the tensor manifold
when computing the probability distributions used in segmentation, preserving the natural
properties of the tensors. Although, the classical Euclidean operations are well adapted to
general square matrices, they are practically/theoretically unsatisfactory for tensors, which
are very specific matrices (symmetric positive-definite). These problems have led to the use
of Riemannian metrics as an alternative (for more information see [1]). To fully circumvent
these difficulties an Affine-Invariant metric [26] [27] has been proposed as a rigorous and
general framework for tensors. This metric has excellent theoretical properties and provide
powerful processing tools, but essentially due to the curvature induced on the tensor space
the computational burden is high. To overcome this limitation, a new family of metrics called
Log-Euclidean was presented in [1], while preserving excellent theoretical properties. This
new approach is based on a novel vector space structure for tensors. In Log-Euclidean frame-
work, Riemannian computations become classical Euclidean computations in the domain of
matrix logarithms. This leads to simple efficient extensions of the classical tools of vector
statistics to tensors. From a practical point of view yields similar results, but with much
simpler and faster computations, with an experimental computation time ratio of at least 2
and sometime more in favor of the Log-Euclidean framework. In order to exploit the infor-
mation present in all the components of the structure tensor, a background modeling method
for tensor data is presented based on the definition of mixture of Gaussians over tensor field.
Theoretical aspects are presented and the frameworks are compared experimentally.

2 Structure Tensor
The combination of color/texture features can improve the segmentation. In order to extract
suitable information from an image, we focus on the combination of these features, encoded
by means of a structure tensor [9]. With regard to the extraction of the texture information,
we use a gradient-based method. For vector-valued images (in our work RGB) the structure
tensor is defined as [T = Kρ ∗(vvT )] with v = [Ix, Iy, Ir, Ig, Ib] , where I is a vector-valued image,
Kρ is a Gaussian kernel with standard deviation ρ , (Ix, Iy) are the partial derivates of the gray
image, and (Ir, Ig, Ib) are the color components. The tensor field obtained directly from the
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images is noisy and needs to be regularized before being further analyzed. A naive but simple
and often efficient regularization method is smoothing with a Gaussian kernel.

3 Riemannian Manifolds
Henceforth, S+

d denotes a symmetric positive definite matrix, Sd is a symmetric matrix and
Nd is a Gaussian distribution of dimension d with zero mean. It well-known that S+

d do not
conform to Euclidean geometry, because the S+

d space is not a vector space, e.g., the space
is not closed under multiplication with negative scalers. Instead, S+

d lies on a Riemannian
manifold (differentiable manifold equipped with a Riemannian metric) [5] [17] [26] [27]
[20]. A manifold is a topological space which is locally similar to an Euclidean space. Let
M be a topological n-manifold. A coordinate chart on M is a pair (U,ϕ), where U is an open
set of M and ϕ : U→ Ũ is a homeomorphism from U to an open set Ũ = ϕ(U)⊂ℜn. Given
a chart (U,ϕ) the set U is called a coordinate domain. The map ϕ is denominated as (local)
coordinate map, and the component functions of ϕ are called local coordinates on U , i.e.,
for any point p ∈M, ϕ(p) = x = (x1, ...,xn)T is the local coordinate representation of p.

A Riemannian manifold (M,G) is a differentiable manifold M endowed with Riemannian
metric G. A Riemannian metric is a collection of inner products < ., . >p, defined for every
point p of M, on the tangent space (TpM) of M at p. The tangent space TpM is simply the
vector space, attached to p, which contains the tangent vectors to all curves on M passing
through p, i.e., the set of all tangent vectors at p. More precisely, let γ(t) : I = [a,b]⊂ℜ→M
denote a curve on the manifold M passing through γ(a) = p ∈M. The tangent vector at p is
representated by γ̇(a) = dγ(a)/dt. The derivatives of all possible curves compose the TpM.

Let Gp be the local representation of the Riemannian metric at p. The inner product of
two tangent vectors u,v ∈ TpM is then expressed as < u,v >p= uT Gpv, inducing a norm for
the tangent vectors in the tangent space such that ||u||2p =< u,u >p. Distances on manifolds
are defined in terms of minimum length curves between points. The geodesic between two
endpoints γ(a) and γ(b) on a Riemannian manifold is locally defined as the minimum length
curve γ(t) : I = [a,b]⊂ℜ→M over all possible smooth curves on the manifold connecting
these endpoints. This minimum lenght is called geodesic/intrinsic distance. The tangent
vector γ̇(t) defines the instantaneous velocity of the curve and its norm |γ̇(t)|= 〈γ̇(t), γ̇(t)〉1/2

γ(t)
is the instantaneous speed. The geodesic distance can be calculated integrating |γ̇(t)| along
γ . Taking I = [0,1] for simplicity, and let γ(0) = p, given a tangent vector γ̇(0) ∈ TpM there
exists a unique geodesic γ(t) starting at p with initial velocity γ̇(0). Therefore the geodesic
γ(t) is uniquely defined by its starting point p and its initial velocity γ̇(0). The endpoint γ(1)
can be computed by applying the exponential map at p, such that γ(1) = expp(γ̇(0)).

Two maps are defined for mapping points between the manifold M and a tangent plane
TpM. The exponential map expp : TpM → M, defined on the whole TpM, is a mapping
between the TpM and the corresponding manifold M. It maps the tangent vector γ̇(0) at
point p = γ(0) to the point of the manifold q = γ(1) that is reached by the geodesic at time
step one. The inverse of the exponential map is given by the logarithm map and denoted by
logp : M→ TpM. It maps any point q ∈M to the unique tangent vector γ̇(0) at p = γ(0) that
is the initial velocity of the unique geodesic γ(t) from p = γ(0) to q = γ(1). In other words,
for two points p and q on the manifold M the tangent vector to the geodesic curve from p to
q is defined as γ̇(0) = logp(γ(1)). It follows that, the geodesic distance D(p,q) is given by

D(γ(0),γ(1)) = 〈γ̇(0), γ̇(0)〉1/2
γ(0) γ̇(0) =−∇γ(0)D

2(γ(0),γ(1)) (1)

The velocity γ̇(0) is computed from the squared distance gradient with respect to γ(0) [20].
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4 Tensor Statistics
We define an image-tensor T as T : Ω⊂ℜ3 7→ S+

d , where Ω is the original color image (3rd

dimension represent the color channels), T(x,y) is a pixel-tensor in image position (x,y)
and S+

d denotes the space of (d × d) symmetric positive definite matrices (d = 5 in our
case). Since (d× d) symmetric matrices have only n = (d/2)(d + 1) independent compo-
nents, applying a local coordinate chart ϕ : S+

d 7→ℜn it is possible to associate to each tensor
T(x,y) ∈ S+

d its n independent components, such that S+
d is isomorphic to ℜn (n = 15 in our

case). A tensor can be understood as the parameters (covariance matrix) of a d-dimensional
normal distribution. Therefore our goal is to define statistics between multivariate normal
distributions and apply it to tensor data. In order to achieve this goal, we need first to define,
the mean and covariance matrix over a set of tensors, and the respective probability density
function. See more details about this section in, [20] [6] [7] [21] [18] [19]. As defined by
Fréchet in [13] the empirical mean tensor T̄, over a set of N random tensors {Ti}, is defined
as the minimizer T = T̄ of the expectation E[D2(T,Ti)] and the empirical covariance matrix
Λ, with respect to the mean tensor T̄, it is estimated as

E[D2(T,Ti)] =
1
N

N

∑
i=1

D2(T,Ti) Λ =
1
N

N

∑
i=1

ϕ(βi)ϕ(βi)T (2)

p(Ti|T̄,Λ) =
1√

(2π)n|Λ|
exp
(
−ϕ(βi)TΛ−1ϕ(βi)

2

)
(3)

where βi = −∇T̄D2(T̄,Ti) and p(Ti|T̄,Λ) define the Gaussian law on the tensor manifold.
This characterization of S+

d through its statistical parameters allow us to derive statistics on
tensors based on different metrics. Next, we will apply these concepts to the three metrics
studied in this paper. Namely, we will study the conventional Euclidean metric (De), then
we describe the geometry of S+

d equipped with a Affine-Invariant Riemannian metric derived
from the Fisher information matrix [30], from which can be induced a geodesic distance (Da)
and finally we exploit the properties of a new family of metrics, called Log-Euclidean (Dl).

4.1 Euclidean Metric
Using a Euclidean metric the dissimilarity De(X,Y) between tensors X,Y ∈ S+

d is given by
the Frobenius norm of the difference[

De(X,Y) = |X−Y|F =
√

tr((X−Y)(X−Y)T)
] [

∇XD2
e(X,Y) = X−Y

]
(4)

The gradient of the squared distance ∇XD2
e(X,Y) can be proved to correspond to the differ-

ence tangent vector. The empirical mean tensor T̄e over a set of N tensors {Ti}, is estimated
as T̄e = (1/N)∑

N
i=1 Ti. The respectively covariance matrix Λe can be estimated plugging

βi =−∇T̄e
D2

e(T̄e,Ti) = (Ti− T̄e) into equation 2.

4.2 Affine-Invariant Metric
Using the fact that the manifold Nd can be identified with the manifold of S+

d matrices,
a Riemannian metric on S+

d can be introduced in terms of the Fisher information matrix
[30]. Thus it is possible to induce several properties of S+

d and derive a Gaussian law on
that manifold. An invariant Riemannian metric [7] for the space of multivariate normal
distributions with zero mean ∀X ∈ S+

d is given by

〈u,v〉X =
1
2

tr(X−1uX−1v) (5)
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where 〈u,v〉X is the inner product for any tangent vectors u,v ∈ Sd , in tangent space TXM,
relative to point X. Let γ : [0,1] ⊂ ℜ→M be a curve in S+

d , with endpoints γ(0) = X and
γ(1) = Y, ∀X,Y ∈ S+

d . The geodesic defined by the initial point γ(0) = X and the tangent
vector γ̇(0) can be expressed [23] as

γ(t) = expX [t γ̇(0)] = X
1
2 exp

[
(t)X−

1
2 γ̇(0)X−

1
2

]
X

1
2 (6)

which in case of t = 1 correspond to the exponential map expX : TXM → M with γ(1) =
expX(γ̇(0)). The respective logarithm map logX : M→ TXM is defined as

γ̇(0) = logX(Y) =−X log(Y−1X) (7)

Notice that these operators are point dependent where the dependence is made explicit with
the subscript. The geodesic distance Da(X,Y) between two points X,Y ∈ S+

d , induced by
the Affine-Invariant Riemannian metric, derived from Fisher information matrix was proved
(Theorem: S.T.Jensen, 1976 , see in [2]) to be given as[

Da(X,Y) =

√
1
2

tr(log2(X−
1
2 YX−

1
2 ))

] [
∇XD2

a(X,Y) = X log(Y−1X)
]

(8)

The gradient of the squared distance ∇XD2
a(X,Y), is equal to the negative of initial ve-

locity γ̇(0) that define the geodesic [23]. This metric exhibits all the properties necessary to
be a true metric such that, positivity, symmetry, triangle inequality and is also affine invariant
and invariant under inversion. Using this metric as soon as N > 2, a closed-form expression
for the empirical mean T̄a of a set of N tensors {Ti} ∈ S+

d cannot be obtained. The mean is
only implicitly defined based in the fact that the Riemannian barycenter exists and is unique
for the manifold S+

d . In the literature [26], this problem is solved iteratively, for instance
using a Gauss-Newton method (gradient descent algorithm) given by[

T̄t+1
a = expT̄t

a
(V)
] [

V =− 1
N

N

∑
i=1

∇T̄t
a
D2

a(T̄
t
a,Ti) =− 1

N
T̄t

a

N

∑
i=1

log(T−1
i T̄t

a)

]
(9)

where V is a tangent vector (t = 1), given by the gradient of the variance. The covariance Λa
can be estimated plugging βi =−∇T̄a

D2
a(T̄a,Ti) =−T̄a log(T−1

i T̄a) into equation 2.

4.3 Log-Euclidean Metric
We now present the framework for the tensor space endowed with the Log-Euclidean metric
[1]. Based on specific properties of the matrix exponential/logarithm on tensors, it is possible
to define a vector space structure on tensors. The important point here is that the logarithm
of a tensor X is unique, well defined and is a symmetric matrix V = log(X). Conversely,
the exponential of any symmetric matrix V yields a tensor X = exp(V ), i.e. each symmetric
matrix is associated to a tensor by the exponential. This means that under the matrix ex-
ponentiation operation, there is a one-to-one correspondence between symmetric matrices
and tensors. Since there is a one-to-one mapping between the tensor space and the vector
space of symmetric matrices, one can transfer to tensors the standard algebraic operations
(addition + and scalar multiplication .) with the matrix exponential. This defines on tensors
the logarithmic multiplication � and the logarithmic scalar multiplication ~, given by:

X�Y = exp[log(X)+ log(Y)] λ ~X = exp[λ . log(X)] = Xλ (10)

The operator � is commutative and coincides with matrix multiplication whenever the two
tensors X,Y commute in the matrix sense. With� and ~ the tensor space has by construction
a vector space structure, which is not the usual structure directly derived from addition and
scalar multiplication on matrices.
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Among Riemannian metrics in Lie groups, the most suitable in practice, when they exist,
are bi-invariant metrics, i.e., metrics that are invariant by multiplication and inversion. These
metrics are used in differential geometry to generalize to Lie groups a notion of mean that is
consistent with multiplication and inversion. For our tensor Lie group, bi-invariant metrics
exist and are particularly simple [1]. Their existence simply results from the commutativity
of logarithmic multiplication between tensors, and since they correspond to Euclidean met-
rics in the domain of logarithms are called Log-Euclidean metrics. The tensor vector space
with a Log-Euclidean metric is in fact isomorphic (algebraic structure of vector space is con-
served) and isometric (distances are conserved) with the corresponding Euclidean space of
symmetric matrices. Hence, the Riemannian framework for statistics is extremely simplified.
Results obtained on logarithms are mapped back to the tensor domain with the exponential.
The Log-Euclidean metric for the space of S+

d , defined on the tangent space Sd is given
∀X ∈ S+

d as follows
〈u,v〉X = 〈∂Xlog.u,∂Xlog.v〉Id (11)

where 〈u,v〉X is the inner product for any tangent vectors u,v ∈ Sd , in tangent space TXM,
relative to point X. The operator ∂Xlog. correspond to the differential of the matrix logarithm.
Let γ : [0,1] ⊂ ℜ→ M be a curve in S+

d , with γ(0) = X and γ(1) = Y, ∀X,Y ∈ S+
d . The

geodesic defined by the γ(0) = X and the tangent vector γ̇(0) can be expressed as

γ(t) = expX[t γ̇(0)] = exp[log(X)+∂Xlog.[t γ̇(0)]] (12)

which in case of t = 1 correspond to the exponential map expX : TXM → M with γ(1) =
expX(γ̇(0)). The respective logarithm map logX : M→ TXM is defined as

γ̇(0) = logX(Y) = ∂log(X)exp.[log(Y)− log(X)] (13)

where the operator ∂Xexp. correspond to the differential of the matrix exponential. Since
the Log-Euclidean metrics correspond to Euclidean metrics in the domain of logarithms, the
shortest path going from the tensor X to the tensor Y is a straight line in that domain. Hence,
the interpolation between two tensors is simplified, and is expressed as

γ(t) = exp[(1− t) log(X)+ t log(Y)] (14)

The geodesic distance Dl(X,Y) between these points X,Y ∈ S+
d , induced by this metric

is also extremely simplified as follows[
Dl(X,Y) =

√
tr[(log(Y)− log(X))2]

] [
∇XD2

l (X,Y) =−γ̇(0)
]

(15)

We consider that the gradient ∇XD2
l (X,Y), is equal to the negative of initial velocity

γ̇(0) that define the geodesic. As one can see, the Log-Euclidean distance is much simpler
than the equivalent Affine-Invariant distance where matrix multiplications, square roots, and
inverses are used. The greater simplicity of Log-Euclidean metrics can also be seen from the
mean in the tensor space. In this case the Fréchet mean of a set of N tensors {Ti} ∈ S+

d is a
direct generalization of the geometric mean of positive numbers and is given explicitly by

T̄l = exp

[
1
N

N

∑
i=1

log(Ti)

]
Λ =

1
N

N

∑
i=1

ϕ(βi)ϕ(βi)T (16)

This closed form equation makes the computation of Log-Euclidean means straightfor-
ward. Pratically, one simply uses the usual tools of Euclidean statistics on the logarithms
and maps the results back to the tensor vector space with the exponential. This is theorically
fully justifed because the tensor Lie group endowed with a bi-invariant metric (i.e. here a
Log-Euclidean metric) is isomorphic, diffeomorphic and isometric to the additive group of
symmetric matrices [1]. When the Fréchet expectation is uniquely defined, one can also
compute centered moments of superior order like the covariance. The covariance matrix
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Λl can be estimated plugging βi = −∇T̄l
D2

l (T̄l ,Ti) into equation 2. In terms of elemen-
tary operations like distance, geodesics and means, the Log-Euclidean case provides much
simpler formulae than in Affine-Invariant case. However, we see that the Riemannian ex-
ponential/logarithm mappings are complicated in the Log-Euclidean case by the use of the
differentials of the matrix exponential/logarithm. For general matrices, one has to compute
the series

∂Xexp.(u) =
+∞

∑
k=1

1
k!

[
k−1

∑
i=0

uiXu(k−i−1)

]
(17)

This cost would probably be prohibitive if we had to rely on numerical approximation meth-
ods. However, in the case of symmetric matrices, the differential is simplified. Using spectral
properties of symmetric matrices, one can compute an explicit and very simple/efficiently
closed-form expression for the differential of both matrix logarithm and exponential (see
more details in [12]). Let u = RDRT where D is a diagonal matrix, and consider Z = RXRT .
As D is diagonal, one can access the (l,m) coefficient of the resulting matrix as :[

∂Xexp.(u) = RT
∂Zexp.(D)R

] [
[∂Zexp.(D)](l,m) =

exp(dl)− exp(dm)
dl −dm

[Z](l,m)

]
(18)

5 Background Modeling
In order to model the background we use a mixture of K Gaussians on tensor domain as
proposed in [8] for DT-MRI segmentation. Based on the definition of a Gaussian law on
tensor space, we can define a mixture of Gaussians (GMM) as follows

p(Ti|Θ) =
K

∑
k=1

ωk

exp
(
−(1/2)ϕ(βi,k)T Λ

−1
k ϕ(βi,k)

)
√

(2π)n|Λk|
(19)

where each gaussian density N (Ti|T̄k,Λk) is a component of the mixture. Each component
is characterized by, a mixing coeficient ωk (prior), a mean tensor T̄k and a covariance matrix
Λk. Θ denotes the vector containing all the parameters of the given mixture. The matrix
βi,k =−∇T̄k

D2(T̄k,Ti) depends on the chosen metric. A general technique for finding max-
imum likelihood estimators in latent variable models is the Expectation-Maximization (EM)
algorithm [10]. An exact EM algorithm implementation as proposed in [8] for the Affine-
Invariant case can be a costly procedure. In order to reduce the processing time we propose
a algorithm based on an online K-means approximation of EM, adapted from the version
presented in [34]. The foreground detection is performed in the same way as in [34].

5.1 Kmeans - Euclidean Metric
In the Euclidean case, the algorithm proposed is similar to the Stauffer’s algorithm [34]
except for the fact that the pixel is modeled using tensors instead of vectors (color). The new
mixture parameters combine the prior information with the observed sample. The model
parameters are updated using an exponential decay scheme with learning rates (α and ρ).
The mixture weights are updated using ω t

k = (1−α)ω t−1
k +(α)(Mt

k), where Mt
k is 1 for the

model which matched and 0 for the remaining models. The parameters of the distribution
which matches the new observation (Ti) are updated as follows[

T̄t
k = (1−ρ)T̄t−1

k +ρTi

] [
Λ

t
k = (1−ρ)Λt−1

k +ρϕ(β t
i,k)

T
ϕ(β t

i,k)
]

(20)

[
β

t
i,k =−∇T̄t

k
D2

e(T̄
t
k,Ti) = Ti− T̄t

k

] [
ρ = αN (Ti|T̄t−1

k ,Λt−1
k )

]
(21)
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5.2 Kmeans - Affine-Invariant Metric
The tensor mean (T̄t

k) update equation presented (20) can only be directly applied in the Eu-
clidean case. As mentioned previously we need to take into account the Riemannian geom-
etry of the tensor manifold to apply the geodesic metrics (Affine-Invariant, Log-Euclidean).
We propose an approximation method to update the tensor mean, based on the concept of
interpolation between two tensors. The tensors interpolation can be seen as a walk along the
geodesic joining the two tensors. In the Affine-Invariant case, a closed-form expression is
given by the exponential map (6). In order to simplify we change the notation as follows[

Z = T̄t
k
] [

X = T̄t−1
k = γ(0)

]
[Y = Ti = γ(1)] (22)

Let γ(t) : [0,1]⊂ℜ→M be the geodesic with γ(0) = X and γ(1) = Y. Z is the interpolation
between X and Y at t = ρ[

γ̇(0) =−X log(Y−1X)
]

[Y = expX(γ̇(0))] [Z = expX(ργ̇(0))] (23)

Plugging γ̇(0) into (6), the point Z on the manifold that is reached by the geodesic γ(t) at
time t = ρ is estimated as

Z = γ(ρ) = X
1
2 exp

[
(ρ)X−

1
2

[
−X log(Y−1X)

]
X−

1
2

]
X

1
2 (24)

β
t
i,k =−∇T̄t

k
D2

a(T̄
t
k,Ti) =−∇ZD2

a(Z,Y) =−Z log(Y−1Z) (25)

5.3 Kmeans - Log-Euclidean Metric
In the Log-Euclidean case, a closed-form expression for interpolation between two tensors
is given by the equation (14). Let γ(t) : [0,1] ⊂ℜ→M be the geodesic with γ(0) = X and
γ(1) = Y. The interpolation point Z between X and Y on the manifold that is reached by the
geodesic γ(t) at time t = ρ is estimated as

Z = γ(ρ) = exp[(1−ρ) log(X)+ρ log(Y)] (26)

β
t
i,k =−∇T̄t

k
D2

l (T̄
t
k,Ti) =−∇ZD2

l (Z,Y) = ∂log(Z)exp.[log(Y)− log(Z)] (27)

6 Results
In order to analyze the effectiveness of the proposed methods, we conduct several exper-
iments on two sequences presented in previous literature. The first scene (Sequence1) is
the HighWayI sequence from ATON project (http://cvrr.ucsd.edu/ aton/shadow/). The sec-
ond scene (Sequence2) is the moving camera sequence from [32]. The groundtruth fore-
ground was obtained by manual segmentation. In this section several results of applying the
proposed methods to these sequences are presented. Two widely-used vector space meth-
ods, namely Mixture of Gaussians (GMM) [34] and Kernel Density Estimation (KDE) [11]
are employed to compare with the proposed tensor framework (using the three metrics pre-
sented). We analyze the performance of both vector methods (GMM,KDE) using two types
of features sets, namely a set with RGB data (Ir, Ig, Ib) and a set incremented with image
gradients (Ir, Ig, Ib, Ix, Iy). It is stressed that no morphological operators were used.

Traditional background modeling methods assume that the scenes are of static structures
with limited perturbation. Their performance will notably deteriorate in the presence of dy-
namic backgrounds. In dynamic scenes, although some pixels significantly changes over
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time, they should be considered as background. As shown in Fig. 1, the traditional vector
methods (GMM,KDE) can not accurately detect moving objects in dynamic scenes. They la-
bel large numbers of moving background pixels as foreground and also output a huge amount
of false negatives on the inner areas of the moving object. However, the proposed framework
can accurately distinguish moving background pixels and true moving objects. Our method
handles small dynamic background motions, since the proposed procedure integrates spa-
tial texture (pixel based and region based information by tensor matrices), considering the
correlation between pixels. It uses features which effectively models the spatial correlations
of neighbors pixels, which is very important to accurately label those moving background
pixels. The vector GMM methods at the beginning of the sequences which do not include
foreground objects performs poorly and detected as foreground a lot of background pixels.
The reason for this, is because these methods exploit only simple features, and so need to take
longer time to train the background models than the proposed methods in order to accurately
detect the foreground pixels. On the other hand, the proposed framework handles dynamic
motions immediately and achieves accurate detection at the beginning of the sequences. The
spatial correlations provide the substantial evidence for labeling the center pixel and they are
exploited to sustain high levels of detection accuracy.

Sequence 1 Sequence 2
Methods T PR FPR T PR FPR

GMM [Ir, Ig, Ib] 55.20 16.07 58.00 17.12
GMM [Ir, Ig, Ib, Ix, Iy] 61.30 13.50 63.20 14.65
KDE [Ir, Ig, Ib] 62.80 12.83 65.60 13.32
KDE [Ir, Ig, Ib, Ix, Iy] 69.10 10.95 71.50 11.26
GMM [Tensor] Euclidean 72.50 8.72 76.40 8.95
GMM [Tensor] Affine-Invariant 93.00 2.08 90.50 2.24
GMM [Tensor] Log-Euclidean 91.40 2.20 89.60 2.45

Table 1: True positive ratio (TPR) , False positive ratio (FPR)

7 Conclusions
We proposed a novel method to perform background modeling using the tensor concept.
The tensor was used to convert the image into a more information rich form, encoding color
and texture data. We review the geometrical properties of the tensor space and focus on
the characterization of the mean, covariance and generalized normal law on that manifold.
In order to exploit the information present in all the tensor components and taking into ac-
count the natural Riemannian structure of the tensor manifold, GMM on tensor fields have
been introduced to approximate the probability distribution of tensor data. This probabilistic
modeling directly on tensor domain was employed to formulate foreground segmentation on
tensor field. As this work shows, new points of view on the tensor space can lead to signif-
icantly faster and simpler computations. We proposed a new K-means approximation of the
EM algorithm to estimate the mixture parameters based on a new Riemannian metric, called
Log-Euclidean, in order to speed up the process. Based on a novel vector space structure
for tensors, the Log-Euclidean framework transforms Riemannian computations on tensors
into Euclidean computations on vectors in the logarithms domain. This leads to simple ef-
ficient extensions of the classical tools of vector statistics to tensors. This new metric also
has the same excellent theoretical properties as the Affine-Invariant metric. From a practical
point of view yield very similar results and are obtained much faster, with an experimental
computation time ratio of at least 2 and sometime more in favor of the Log-Euclidean.
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Figure 1: Column left to right : Original frames , GMM [Ir,Ig,Ib,Ix,Iy] , KDE
[Ir,Ig,Ib,Ix,Iy] , Tensor Euclidean , Tensor Affine-Invariant , Tensor Log-Euclidean

Acknowledgements
This work was supported by BRISA, Auto-estradas de Portugal, S.A.

References
[1] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric Means in a Novel Vector

Space Structure on Symmetric Positive-Definite Matrices. SIAM Journal on Matrix
Analysis and Applications, 29(1):328–347, 2006.

[2] C. Atkinson and A. F. Mitchell. Rao distance measure. Sankhya: The Indian Journal
of Statistics, 43(3):345–365, 1981.

[3] S. Babacan and T. Pappas. Spatiotemporal algorithm for joint video segmentation and
foreground detection. European Signal Processing Conference - (EUSIPCO), 2006.

[4] J. Bigun and J. Wiklund. Multidimensional orientation estimation applications texture
analysis optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence
- (TPAMI), 13(8):775–790, 1991.

[5] Manfredo P. Carmo. Riemannian Geometry. Birkhauser, 1992.

[6] Carlos A. Castaño-Moraga, C. Lenglet, and R. Deriche. A fast rigorous anisotropic
smoothing method DT-MRI. IEEE International Symposium on Biomedical Imaging -
(ISBI), pages 93–96, 2006.

[7] Carlos A. Castaño-Moraga, C. Lenglet, and R. Deriche. A Riemannian approach to
anisotropic filtering of tensor fields. Signal Processing, 87(2):263–276, 2007.

[8] R. de Luis Garcia and C. Alberola-Lopez. Mixtures of gaussians on tensor fields for
DT-MRI segmentation. International Conference on Medical Image Computing and
Computer-Assisted Intervention - (MICCAI), 2007.



CASEIRO et al.: BACKGROUND MODELLING ON TENSOR FIELD 11

[9] R. de Luis Garcia, M. Rousson, and R. Deriche. Tensor processing for texture and
colour segmentation. Scandinavian Conference on Image Analysis, 2005.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

[11] A. M. Elgammal, D. Harwood, and L. S. Davis. Non-parametric model for background
subtraction. European Conference on Computer Vision - (ECCV), 2000.

[12] P. Fillard, V. Arsigny, X. Pennec, and N. Ayach. Joint Estimation and Smoothing of
Clinical DT-MRI with a Log-Euclidean Metric. Technical Report - INRIA, (RR-5607),
2005.

[13] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié.
Ann. Inst. H. Poincaré, 10:215–310, 1948.

[14] M. Heikkila and M. Pietikainen. A texture-based method for modeling the background
and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence - (TPAMI), 28(4):657–662, 2006.

[15] S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Detection and location of people
in video images using adaptive fusion of color and edge information. IEEE Computer
Vision and Pattern Recognition - (CVPR), 2000.

[16] O. Javed, K. Shafique, and M. Shah. A hierarchical approach to robust background
subtraction using color and gradient information. IEEE Workshop on Motion and Video
Computing, 2002.

[17] John M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

[18] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics Multivariate Nor-
mal Distributions: Geometric Approach Application Diffusion Tensor MRI. Technical
Report - INRIA, (RR-5242), 2004.

[19] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Toward Segmentation 3D Proba-
bility Density Fields Surface Evolution: Application Diffusion MRI. Technical Report
- INRIA, (RR-5243), 2004.

[20] C. Lenglet, M. Rousson, and R. Deriche. A statistical framework for DTI segmentation.
IEEE International Symposium on Biomedical Imaging - (ISBI), pages 794–797, 2006.

[21] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on Manifold Mul-
tivariate Normal Distributions Theory Application Diffusion Tensor MRI Processing.
Journal Mathematical Imaging Vision - (JMIV), 25(3):423–444, 2006.

[22] A. Mittal and N. Paragios. Motion-based background subtraction using adaptive kernel
density estimation. IEEE Computer Vision and Pattern Recognition - (CVPR), 2004.

[23] Maher Moakher. A Differential Geometric Approach to Geometric Mean Symmetric
Positive-Definite Matrices. SIAM Journal on Matrix Analysis and Applications, 26(3):
735–747, 2005.



12 CASEIRO et al.: BACKGROUND MODELLING ON TENSOR FIELD

[24] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh. Background modeling and subtrac-
tion of dynamic scenes. IEEE International Conference on Computer Vision - (ICCV),
2003.

[25] N. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision system for
modeling human interactions. IEEE Transactions on Pattern Analysis and Machine
Intelligence - (TPAMI), 22(8):831–843, 2000.

[26] X. Pennec, P. Fillard, and N. Ayache. A Riemannian Framework for Tensor Computing.
International Journal Computer Vision - (IJCV), 66(1):41–66, 2006.

[27] Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geomet-
ric Measurements. Journal Mathematical Imaging Vision - (JMIV), 25(1):127–154,
2006.

[28] R. Pless. Spatio-temporal background models for outdoor surveillance. EURASIP -
Journal on Applied Signal Processing, 2005:2281–2291, 2005.

[29] F. Porikli and O. Tuzel. Bayesian background modeling for foreground detection. In-
ternational Workshop on Video Surveillance & Sensor Networks, 2005.

[30] C. R. Rao. Information accuracy attainable in estimation statistical parameters. Bulletin
Calcutta Mathematical, 37:81–91, 1945.

[31] M. Seki, T. Wada, H. Fujiwara, and K. Sumi. Background subtraction based on
cooccurrence of image variations. IEEE Computer Vision and Pattern Recognition -
(CVPR), 2003.

[32] Y. Sheikh and M. Shah. Bayesian modeling of dynamic scenes for object detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence - (TPAMI), 27(11):
1778–1792, 2005.

[33] A. Shimada, D. Arita, and R. Taniguchi. Dynamic control of adaptive mixture-of-
gaussians background model. IEEE International Conference on Video and Signal
Based Surveillance - (AVSS), 2006.

[34] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time
tracking. IEEE Computer Vision and Pattern Recognition - (CVPR), 1999.

[35] T. Tanaka, A. Shimada, D. Arita, and R. Taniguchi. A fast algorithm for adaptive
background model construction using parzen density estimation. IEEE International
Conference on Video and Signal Based Surveillance - (AVSS), 2007.

[36] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. Pfinder: Real-time track-
ing of the human body. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence - (TPAMI), 19(7):780–785, 1997.

[37] J. Yao and J. M. Odobez. Multi-layer background subtraction based on color and tex-
ture. IEEE Computer Vision and Pattern Recognition - (CVPR), 2007.

[38] S. Zhang, H. Yao, and S. Liu. Dynamic background modeling and subtraction using
spatio-temporal local binary patterns. IEEE International Conference on Image Pro-
cessing - (ICIP), 2008.


