

Industrial Robotics | Fundamentals of Robotics and Bionics 2025/2026 Mechanical Engineering | Biomedical Engineering Faculty of Sciences and Technology - University of Coimbra Software Installation Guidelines

Software requirements, for this course:

- MatLab (2021b or later) [~7GB of disk space].
- Virtual Machine 'Player' software (VMware Workstation / Fusion Pro).
- Virtual machine image file w/ everything pre-installed [file w/ ~25GB of disk space]
 - Includes Gazebo 9, the robot simulator and and the Robot Operating System (ROS Melodic)
- 'TurtleBot3-vxx.zip' package [ROS interface between MatLab and the TurtleBot3 robot], available at course repository.

1. MatLab Installation (2021b or later)

Go to the Mathworks website, login with your student account, download and install the latest version.

https://www.mathworks.com/products/get-matlab.html?s_tid=gn_getml

The following toolboxes are required:

- · Image Processing Toolbox.
- Robotics System Toolbox.
- · ROS ToolBox.
- Computer Vision ToolBox.
- Image Acquisition Toolbox.
- Statistics and Machine Learning Toolbox.

2. Virtual Machine (VM) image

2.1. Download VM image

Download the virtual machine image with the robot simulador already installed (on a guest OS: Ubuntu 18 Bionic).

- VMware compressed image (7.8GB) [Mega]: https://mega.nz/folder/yIFHFbBJ#WIA1Ohc4nelRhMg5KriP4w
- · Alternative link [OneDrive]:

https://universidadedecoimbra154-my.sharepoint.com/:f:/g/personal/uc44454_uc_pt/EgO_zHLVXJdOmSiriJ61iVYBVk4BaUsWThiHYPqGGIYY0A?e=eqi3sq

This file needs to be uncompressed, which results in a folder with 25GB.

2.2. Virtual Machine 'Player' (software to run the VM image)

- Windows users could use VMware Workstation Pro software (free for personal use).
- MacOS (Intel) users have the equivalent VMware Fusion Pro (free for personal use)).
- MacOS (Apple Silicon) only have a limited solution (see notes at the end of document).

1

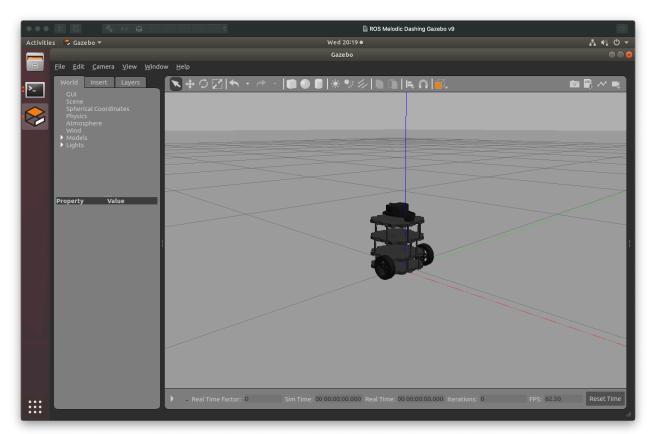
- VMware Workstation Pro 17.0 (windows) [version installed in classroom]: https://mega.nz/folder/aAUQxAZT#p4fO-MxDeOHUJHPQ2XEmMA
- VMware Fusion Pro 13.6 (macOS): https://mega.nz/folder/ud9TnLjS#bffPUQ2fhwbDs3n-NpvJzg

• (Newer VMware versions are available but it requires creating a free Broadcom account) Download and install VMware Workstation/Fusion Pro software (official Broadcom link): https://support.broadcom.com/.../Workstation176 (windows 64-bits or macOS).

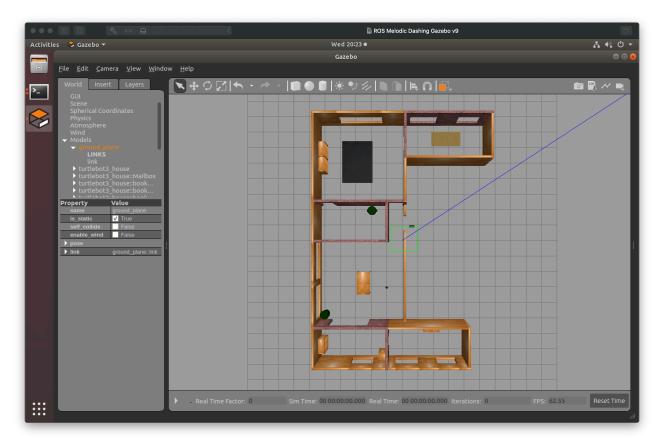
2.3 Initial Setup

- Decompress the VM image archive to a location on your hard drive.
- Start VMware Workstation (or VMware Fusion if you are using an macOS device).
- Press Open a Virtual Machine.
- Browse to the location of the Ubuntu image, select the ros melodic dashing gazebov9.vmx file.
- · Start the virtual machine.
- (Press "I copied it", if a window opens that asks if you copied or moved the virtual machine)

2.4. Run Virtual Machine


Check VM settings before running the first time.

- 2 processors w/ 4GB RAM is enough (in older machines select just 1 CPU and 2GB RAM).
- [Optional] Choose Bridged Network (autodetect) in the network adapter section.


 Bridged network allows the VM IP address to be in the same range that the host machine.

- Launch the virtual machine.
- Check the username, password and IP address (shown at the wallpaper's top right)
- Update the keyboard layout, in Settings App (language and region input sources).
- The display resolution could be adjusted in the Settings App > Devices > Screen Display.
- Open terminal, and run the start-up (empty) Gazebo world: user@ubuntu:~\$./start-gazebo-empty.sh

Gazebo simulation, in an empty world, with the TurtleBot3 robot.

House world simulation with TurtleBot3.

• For TurtleBot3 examples, use the previous Gazebo Empty or Gazebo House scripts (start-gazebo-house.sh)

3. Download 'TurtleBot3-vxx.zip' MatLab package

The 'TurtleBot3-vxx.zip' includes:

- MatLab class (TurtleBot3.m) file. Main class that allows to interface between MatLab and the TurtleBot robot (real/simulated).
- Multiple 2D & 3D maps (maps folder).
- Tools folder (utility functions).
- Code demo examples.

3.1 Download package

The 'TurtleBot3-vxx.zip' is available at course repository webpage (https://ucteacher.uc.pt/). Download it, uncompress all files and copy them to the MatLab working folder.

3.2 Install 3D maps

- 3.2.1. Copy the entire "maps" folder to the virtual machine (to any location):
- Some virtual machines also support simple drag-and-drop functionality.
- Windows users can use WinSCP (https://winscp.net/) to copy data between you computer and the virtual machine (use a sftp connection).
- MacOs users can use the free Cyberduck App.
- Linux users just need to write in the location path: sftp://user@192.168.10.xxx (replace with the IP of virtual machine).
- Some virtual machines also support simple drag-and-drop functionality.
- 3.2.2. Open terminal, navigate to the directory location of the maps folder, and run the install script as:

>> user@ubuntu:~\$ sh install maps.sh

The message "---done---" should appear upon a successful installation.

The home folder (/home/user) should hold ten new scripts (start-gazebo-"map".sh).

[3.2.2. Uninstall 3D maps]

Similarly, all maps and respective configuration files can be removed by running the uninstall script.

>> user@ubuntu:~\$ sh uninstall_maps.sh

3.3 [Optional] Compile* Auxiliary ROS Messages (access to low level encoders data in real TurtleBot robot)

* Only supported in linux64 and mac64 systems. Requires python** and cmake. (** Matlab 2021b requires python 2.7. Matlab 2022b, or later, requires python 3.9).

3.3.1. Check which python and cmake versions are installed (and detected by MatLab):

TurtleBot3('check-versions');

If all packages are installed but not detected, go to the <code>setupPath()</code> function (in <code>TurtleBot3.m</code>) and modify the PATH settings according to your system.

After that run: TurtleBot3('setup-path');

3.3.2. Compile auxiliar sensors-state ROS message:

TurtleBot3('setup-sensors-msg');

3.3.3. Check if new ROS message is available:

TurtleBot3('check-sensors-msg');

4. Run MatLab demos:

In the provided demos, the TurtleBot is initially controlled under a MatLab environment, that issues commands (thought ROS) to the Gazebo simulator. Later on, this procedure is extended to the real robot.

- Edit each demoxxx.m file and update the local host and virtual machine IP addresses (i.e. modify the IP OF TURTLEBOT and IP OF HOST COMPUTER string variables).
- The IP address of you machine can be found using the ifconfig terminal command (linux and Mac) or ipconfig (Windows).
- **Note** (Windows users): <u>Accept firewall rules</u> for libmwros1server service in both private and public network profiles, when asked for the first time.

4.1. Read robot location (pose)

- · Launch the virtual machine.
- Open terminal, and start the empty Gazebo world (./start-gazebo-empty.sh).
- Launch MatLab (host machine)
- Run the demoPose.m

4.2. Read Lidar data

- · Launch the virtual machine.
- Open terminal, and start the house Gazebo world (./start-gazebo-house.sh).
- Launch MatLab (host machine)
- Run the demolidar.m

4.3. Teleoperation with keyboard

- · Launch the virtual machine.
- Open terminal, and start the house Gazebo world (./start-gazebo-empty.sh).
- Launch MatLab (host machine)
- Run the demoKeyboardOperation.m

4.4. Add 3D virtual obstacles

- · Launch the virtual machine.
- Open terminal, and start the empty Gazebo world (./start-gazebo-empty.sh).
- Launch MatLab (host machine)
- Run the demoGazeboObjects.m

5. Operate with real TurtleBot3 mobile robot

The available TurtleBot3 robot is configured to connect via the TurtleNet WIFI network. It has the following (static) IP address:

```
IP: 192.168.10.200
```

5.1. Connect to TurtleNet WIFI network

Use the following network information:

```
SSID: TurtleNet password: turtleRI23
```

Upon connection, your machine should have an IP in range of 192.168.10.xxx. This is you IP HOST COMPUTER value.

5.2. Connect to a robot via secure-shell protocol (ssh)

In Windows, an external ssh client is required. Use Putty (https://www.putty.org/). Fill the Host name / IP Address text box with 192.168.10.200 when using TurtleBot3 and then click Open. The username is pi and the password is turtlebot3

In Linux and MacOs, simply open a terminal session and write:

```
>> ssh <u>pi@192.168.10.200</u>
>> password = turtlebot3
```

5.2.1. Startup ROS server

Upon connection by ssh, start the ROS server by typing in the following command:

```
>> roslaunch turtlebot3 bringup turtlebot3 robot.launch
```

Wait for startup, while a set of log messages are being shown. Proceed after receiving `[INFO] [xxx]: Calibration End' status. The ROS server is now running. The shell session should remain open during the entire operation with the robot.

For terminate ROS server, press: [ctrl + c]

5.3. Connect using MatLab

Update your code with updated connection settings:

Run as standard.

5.4 Shutdown TurtleBot

Termine the ROS server (by pressing [ctrl + c] in the previous shell session).

Shutdown the robot Operation System:

```
>> sudo shutdown now
```

Power down OpenCR (robot's controller):

```
Turn off power switch.
```

6. References (and useful links):

TurtleBot3 resources:

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#featureshttps://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/

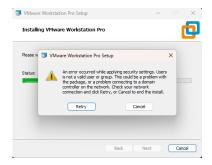
- VMware compressed original Ubuntu18+ROS+Gazebo image file (7.8GB) [MathWorks server]: https://ssd.mathworks.com/supportfiles/ros/virtual_machines/v2/ ros melodic dashing gazebov9 linux win v4.zip
- · Disable IPv6 on Ubuntu:

https://itsfoss.com/disable-ipv6-ubuntu-linux/

 Manually Install ROS (Melodic) + TurtleBot3 Simulation Package (in Ubuntu 18 LTS): http://wiki.ros.org/melodic/Installation/Ubuntu
 https://emanual.robotis.com/docs/en/platform/turtlebot3/guick-start/
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation
 https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
 <a href="https://emanual.robotis.com/docs/en/p

Virtualization software for Apple Silicon Macs:

The current virtualization software solutions compatible with Apple Silicon are the VMmare Fusion (v13+) and Parallels Desktop (v18 or higher). However, the available ROS + Ubuntu 18 image file is only compatible with Parallels Desktop.


Parallels Desktop (free limited amount of time) https://www.parallels.com/eu/products/desktop/

Download ARM specific ROS + Ubuntu image (compress 3.64GB zip) [only for Parallels Desktop] https://mega.nz/folder/bU1XXAKD#xBpKH3I7LxcLIORgknwiSw

Uncompress (~10.3GB) and import using Parallels Desktop. The default username and password is "user"/"password", respectively.

- Direct link for VMware Workstation Pro 17.6 (windows) https://mega.nz/folder/6UkH2aST#S89wKZVsJWVJrxlbIW2xNQ
- VMware Workstation Pro 17.6 "security settings" installation error (Windows)

 Open window terminal: Start menu -> search for 'cmd', then execute the following commands:
 net localgroup /add "Authenticated Users"
 net localgroup /add "Users"

(source: https://community.broadcom.com/vmware-cloud-foundation/discussion/vmware-workstation-176-does-not-install)

- Alternative Virtualization Software Virtual Box Official website: https://www.virtualbox.org/wiki/Downloads
- Ubuntu+ROS+Gazebo image file for Virtual Box ROS-VM-VirtualBox