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Abstract: Digital transformation of industry has gained emphasis in recent years in
academia and industry. Organizations need to be more competitive and efficient and
improve their processes and performance to cope with changes in environmental legisla-
tion, efficient management of resources and energy, and the trend toward zero waste. These
factors have led to the emergence of a new concept. This paper studies data-driven fuzzy-
based models for process monitoring focused on Wastewater Treatment Plants (WWTPs).
This work aims to study interpretable industrial process monitoring models, which must
be easily interpretable by expert process operators. For this purpose, different fuzzy-based
models were studied. Exhaustive validations are performed. The studied models employ
16 key variables at 14 different points throughout the waterline of a treatment plant. The
learning and testing of each model for every key variable at each involved point use distinct
sets of input variables and varied learning model parameters. The impact of the selected
input variables and the learning parameters on the model accuracy, and the accuracy versus
interpretability tradeoff are analyzed. The best model for each key variable is developed
based on the accuracy versus interpretability tradeoff.

Keywords: process monitoring; fuzzy systems; WWTP; data-driven models; interpretable
models; fuzzy systems

MSC: 68W27; 68U99

1. Introduction
In 2011, during the Hannover Fair, the term Industry 4.0 was coined to represent

a strategic framework for integrating advanced technologies into the industrial domain.
Industry 4.0 symbolizes the digital transformation of industries through the adoption of
innovative tools such as the Internet of Things, artificial intelligence, big data analytics,
automation, and cyber–physical systems [1]. These technologies have brought significant
improvements in efficiency, sustainability, and operational control across various industrial
sectors. In particular, the sanitation and wastewater treatment sector has benefited greatly
from these advances. Using the Industry 4.0 technologies, this sector has been able to
improve process monitoring and control, ultimately improving the quality of treated water
and contributing to more sustainable resource management practices.

In the context of basic sanitation, wastewater treatment plants (WWTPs) play a crucial
role in ensuring environmental and public health. These facilities are responsible for remov-
ing pollutants from wastewater generated by various human activities and allowing them
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to be safely discharged into the environment or potentially reused. WWTPs are inherently
complex systems with non-linear dynamics and operate under the influence of external
disturbances such as rainfall and storms. Despite these challenges, they must effectively
carry out multi-stage treatment processes while maintaining optimal performance to meet
environmental regulations and sustainability goals. WWTPs are responsible for approxi-
mately 3% of global energy demand, and this energy share is estimated to double in the
next decade [2]. In addition to electricity consumption, the treatment processes carried out
in WWTPs also require the use of chemicals, which result in the emission of greenhouse
gases [3]. Given the complexity of this scenario, it is essential that WWTPs adapt to the
principles of Industry 4.0, incorporating advanced optimization and control methods, as
well as robust monitoring strategies. Effective monitoring is crucial for assessing and
guaranteeing the efficiency of treatment processes, which enable early detection of faults,
optimization of performance, and compliance with environmental regulations.

The monitoring of WWTPs can be conducted through various approaches, depending
on the specific objectives, performance indicators, monitoring locations, and tools employed
in the process. Different methodologies can be applied to assess treatment efficiency, detect
anomalies, and optimize operations. In [4], Principal Component Analysis (PCA) was used
to monitor key variables such as total suspended solids (TSS) and nitrogen compounds in
the effluent, allowing the identification of faults in both sensors and the treatment process.
Ref. [5] employed a Partial Least Squares (PLS) based approach to developing statistical
tests for identifying environment-related failures. This method was used to detect adverse
weather conditions, as well as operational issues linked to toxicity shocks, inhibition, and
valve malfunctions. The study proposed in [6] uses Long Short-Term Memory (LSTM) to
monitor variables related to the oxidation and nitrification process in the treatment process,
with a focus on detecting faults in the ammonia measurement sensors. The authors in [7]
proposed a real-time monitoring of total nitrogen concentration in the effluent of WWTPs.
In addition, other water quality parameters, such as TSS, biological oxygen demand (BOD),
and chemical oxygen demand (COD), are analyzed. Techniques such as PLS, Recurrent
Neural Network (RNN), Multiple Linear Regression (MLR), Multilayer Perceptron (MLP),
LSTM, Gated Recurrent Unit (GRU), and multihead-attention GRU (MAGRU) were used
for the analyses and predictions. These are examples of studies dedicated to WWTP
monitoring, which have rated promising results and demonstrated significant potential to
enhance the efficiency of these facilities. However, a common limitation among many of
these studies is their limited interpretability.

Interpretability is a crucial feature in the control, optimization, and monitoring models
for WWTPs, particularly in data-driven systems. It enhances the understanding, trust,
and acceptance of results, facilitates error detection, supports informed decision-making,
ensures regulatory compliance, and promotes continuous improvement [8]. This work
aims to study an interpretable monitoring system for key variables in WWTPs, enhance
the understanding of system dynamics, and support informed decision-making. The
monitoring system will be based on fuzzy logic models, with a focus on evaluating their
complexity, accuracy, and interpretability. The main contribution of this work is the study of
different fuzzy-based models with an interpretable structure for modeling the key variables
at the different points of a WWTP waterline. The study evaluates how the chosen input
variables and learning parameters affect both model accuracy and the tradeoff between
accuracy and interpretability. The resulting best model for each key variable must be
determined by considering the tradeoff between the accuracy and interpretability of the
model. Evaluating interpretability quantitatively in a generalized metric, such as accuracy,
has been a challenging task in recent years. The common practice is to assess how complex
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the fuzzy model is based on its number of membership functions, number of rules, and the
size of each rule [9–11].

The following models were studied: (1) a model designed using Fuzzy c-means and
Least Squares Method; (2) the Generalized Additive Models using Zero-Order T-S Fuzzy
Systems (GAM-ZOTS) model [12]; and (3) the Iterative Learning of Multiple Univariate
Zero-Order T-S Fuzzy Systems (iMU-ZOTS) [13]. The proposed approach was validated
using the Benchmark Simulator Model 2 (BSM2), a well-known simulator based on real
data, which simulates the entire wastewater treatment process. The key variables at
different stages of the waterline of the treatment plant were defined as case studies, and an
exhaustive validation was performed. The following factors were analyzed on the models
studied: the impact of the selected variables and the learning parameters on the model
accuracy and the accuracy versus interpretability tradeoff. The three models were used to
model 16 key variables at 14 different points in the treatment plant. Each model for each
key variable for each point was learned/tested with four different sets of input variables
(from the variable selection method), using different learning parameters. Thus, 520 tests
were performed to choose the best model parameters for obtaining the best results for each
variable to be estimated. The results indicated that the model with the highest accuracy
for most variables has a more complex structure compared to others. Two variables were
chosen for each model’s in-depth analysis of predictions to analyze the tradeoff between
accuracy and interpretability.

The remainder of this paper is structured as follows. Section 2 introduces the proposed
interpretable fuzzy framework for process monitoring in WWTPs, detailing its architec-
ture, input variable selection, and fuzzy rule generation process. Section 3 presents the
experimental setup—including model configurations and a comprehensive analysis of
the accuracy–interpretability tradeoff—supported by results on key variables. Finally,
Section 4 concludes the study by summarizing the main findings and discussing the practi-
cal implications of balancing the accuracy and interpretability of the model.

2. Proposed Interpretable Process Monitoring Framework for WWTPs
Monitoring the operation of WWTPs is crucial to ensure their efficiency and sus-

tainability. This section introduces a monitoring framework for WWTPs that integrates
efficiency and interpretability, ensuring practical applicability and confidence in the model’s
results. The following subsections provide a detailed analysis of the framework, including
an overview of WWTP operations (Section 2.1) and a detailed description of the proposed
framework (Section 2.2), with information on the key variables (Sections 2.3 and 2.4) and
used fuzzy models (Section 2.5).

2.1. Overview of Wastewater Treatment Plants

Water is a critical and strategic resource, and the water that results from human
activities, known as wastewater, must be treated so that it can either be reused or returned
to the environment without posing risks to humans and the broader ecosystem. Wastewater
is treated in facilities specifically designed for this purpose, referred to as Wastewater
Treatment Plants (WWTPs). WWTPs are complex facilities that carry out their functions in
multiple stages, involving physical, chemical, and biological processes, to ensure that the
treated wastewater meets the minimum standards set by environmental legislation [14].
Figure 1 illustrates a typical WWTP that employs the activated sludge system for biological
treatment of wastewater. The figure highlights the different stages of treatment, including
primary and secondary treatment, which together form the waterline. Along this waterline,
data were collected for the development of this work, with the sampling points indicated
in Figure 1.
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Figure 1. WWTP with the data collection points along the waterline.

2.2. Framework

The proposed framework aims to develop a monitoring system for WWTPs based on
the prediction of key variables in the treatment process. Data are collected at the WWTP
from designated monitoring points (P1 to P14), as illustrated in Figure 1, and generated
using the BSM2 simulator, which ensures no missing values. To increase the fidelity of
the sensor measurements, noise with known statistical characteristics was added to the
measured data. These noisy signals were used directly by the models, without any form of
noise filtering. All variables were normalized to the [0, 1] range to account for differences in
magnitude and to improve the performance of the machine learning models. Each collected
(input) variable is analyzed for its correlation with the key process variables (targets). If the
correlation exceeds a predefined threshold, the variable is selected for use in the predictive
algorithms. These selected variables are then used to construct datasets for training and
testing forecasting models. The prediction models are based on fuzzy systems that are
employed to enhance the accuracy and interpretability of the forecasts. Figure 2 illustrates
the sequence of the main steps, from data collection at the WWTP to the prediction of key
variables performed by the fuzzy models.

WWTP
(Section 2.1)

Key Variables
Data Points: P1 - P14

Correlation
above

threshold?
Unused Data

Yes Selected Variables
(Section 2.4)

No

Prediction Models
(Section 2.5)

GAM-ZOTS iMU-ZOTSFCM-LSM

Predictions

Figure 2. Flowchart of the proposed monitoring framework.
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2.3. Key Variables and Prediction Points

For this study, the selected variables to be predicted (targets) are total suspended solids,
TSS [g/m3], ammonia and ammonium, SNH [g N/m3], dissolved oxygen, SO [g −COD/m3],
nitrate and nitrite, SNO [g N/m3], biological oxygen demand, BOD [g/m3], and chemical
oxygen demand, COD [g/m3].

The selection of these variables is justified by their significance in wastewater treatment
processes. TSS serves as a critical indicator of the removal efficiency of solid particles from
wastewater. SNH and SNO must be closely monitored to assess the effectiveness of nitrogen
compound removal. SO levels are essential for maintaining biological treatment processes,
as they directly influence the activity of microorganisms. BOD represents the concentration
of biodegradable organic matter in wastewater, whereas COD quantifies the total organic
load, including both biodegradable and non-biodegradable fractions [15].

Data collection was conducted at 14 points along the waterline, as shown in Figure 1:

• The prediction of TSS is performed at the exit of the primary clarifier (P3) using data
from P1 and P2 as input.

• SNH is predicted at three locations: P3 (using P1 and P2), P10 (using P4 and P6), and
P13 (using P11 and P12).

• SO is predicted at P10 with inputs from P4 and P6.
• SNO is estimated at P3 (using P1 and P2), at P10 (using P4 and P6), and at the secondary

clarifier outlet (P13, using P11 and P12).
• BOD and COD are both predicted at P13 using data from P11 and P12.

In total, ten variables are predicted across different points in the wastewater treat-
ment plant, with the collection points indicated in parentheses: TSS(3), SNH(3), SNH(10),
SNH(13), SNO(3), SNO(10), SNO(13), SO(10), BOD(13) and COD(13).

2.4. Selection of Input Variables

The input variables were selected based on their correlation with the target variables
(key variables to be predicted). For that purpose, Pearson’s correlation is used. It measures
the linear dependency between two variables, i.e., a given input variable Xj (j = 1, . . . , n)
and the key variable Y, providing an indicator (r) about the strength of their relationship.
The Pearson’s correlation r between variables Xj and Y is given by [16]:

r =
∑K

k=1
[
(xj(k)− x̄j)(y(k)− ȳ)

]√
∑K

k=1(xj(k)− x̄j)2
√

∑K
k=1(y(k)− ȳ)2

, (1)

where x̄j and ȳ are the arithmetic means of Xj and Y, respectively. xj(k) and y(k) are the
values of Xj and Y at sample k, respectively, and K is the total number of samples.

Each input variable’s correlation with the target variable was evaluated against a
predefined set of thresholds. Variable correlations exceeding a given threshold (r > thr)
were selected as input variables to be used in the prediction model. Multiple thresholds
were considered, allowing for the selection of different input variables depending on the
correlation values.

2.5. Fuzzy Models

Fuzzy logic systems (FLS) are rule-based systems defined with sets of fuzzy IF-THEN
rules, where each rule has an IF statement (the antecedent part) and a THEN statement
(consequent part), expressing high interpretability with the transformation of a human
knowledge base into mathematical formulations [17]. Employing fuzzy-based models to
create prediction models of the key variables on WWTPs offers several benefits for improv-
ing these processes, including addressing their uncertainty, complexity, and variability, as
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well as the creation of easy-to-understand frameworks. The following sections describe the
fuzzy models implemented in this study.

2.5.1. Fuzzy Model Designed Using FCM and LSM

This model, named here as the FCM-LSM model, combines the fuzzy c-means (FCM)
clustering method for the design of the antecedent part of the rules, and the least-squares
method (LSM) for the design of the consequent part. The resulting model has the structure
of a first-order Takagi-Sugeno (T-S) fuzzy system, whose rules are defined below [18]:

Ri : IF x1(k) is Ai
1 AND . . . AND xn(k) is Ai

n

THEN yi(k) = θi⃗x(k), (2)

where

θi = [θi
0, θi

1, . . . , θi
n], (3)

x⃗(k) = [1, x1(k), . . . , xn(k)]⊤, (4)

and the antecedent IF part from the i-th fuzzy rule Ri (i = 1, . . . , N) comprises the mapping
of input variables x(k) = [x1(k), . . . , xn(k)]⊤ using linguistic terms Ai

j (j = 1, . . . , n). The

i-th output yi(k) of the consequent THEN from Ri in Equation (2) is a function depending
on model parameters θi and the predictor’s vector x⃗(k) at k-th sample (k = 1, . . . , K).

FCM partitions a given dataset into N clusters (corresponding also to N fuzzy rules)
or subsets characterized by membership values µi, with the aim of minimizing an objective
function J [19]:

J =
N

∑
i=1

K

∑
k=1

µm
i (k)d

2
i (k), (5)

where m is the fuzzification degree, and d2
i (k) is the square of the Euclidean distance

(L2-norm) between sample x(k) and center of i-th cluster vi = [vi
1, . . . , vi

n]
⊤:

d2
i (k) = (x(k)− vi)⊤(x(k)− vi). (6)

The optimal membership values are calculated as [19]:

µi(k) = d2
i (k)

(
N

∑
i=1

(
d2

i (k)
)1/(m−1)

)−1

, (7)

and the center of i-th cluster is updated as follows:

vi =
∑K

k=1 µm
i (k)× (k)

∑K
k=1 µm

i (k)
. (8)

The membership functions (MFs) in the final FCM-LSM model are represented by
Gaussian functions, computed with the updated centers in Equation (8) and standard
deviations σi

j , which are obtained as follows:

σi
j =

√√√√2 ∑K
k=1 µi(k)(xj(k)− vi

j)
2

∑K
k=1 µi(k)

. (9)

Antecedent Gaussian MFs, µAi
j
, and their normalized versions, ωi, are calculated

as follows:
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µAi
j
(k) = exp

(
−
(xj(k)− vi

j)
2

2(σi
j )

2

)
, (10)

ωi(k) =
∏n

j=1 µAi
j
(k)

∑N
i=1 ∏n

j=1 µAi
j
(k)

. (11)

The FCM-LSM output is obtained as the sum of the individual contributions of each
rule from Equation (2):

y(k) =
N

∑
i=1

ωi(k)yi(k) =
N

∑
i=1

ωi(k)θi⃗x(k), (12)

and its global version can be computed as follows:

ŷ = [ŷ(1), . . . , ŷ(K)]⊤ = ΦΘ, (13)

Φ = [ϕ(1), . . . , ϕ(K)]⊤, (14)

ϕ(k) = [ω1(k)(⃗x(k))⊤, . . . , ωN(k)(⃗x(k))⊤]⊤, (15)

Θ = [θ1, . . . , θN ]⊤. (16)

The consequent parameters Θ are obtained by implementing LSM in Equation (13)
considering the desired real output y = [y(1), . . . , y(K)]⊤ in place of ŷ [20]:

Θ = Φ†y, (17)

where Φ† = (Φ⊤Φ)−1Φ⊤ when K ≥ N(n + 1).

2.5.2. GAM-ZOTS

The GAM-ZOTS model consists of an approach for learning neo-fuzzy neuron systems,
called generalized additive models using zero-order T-S fuzzy systems (GAM-ZOTS) [13].
The GAM-ZOTS structure consists of the sum of univariate models, whose fuzzy rules are
expressed as follows:

R
ij
j : IF xj(k) is A

ij
j

THEN y
ij
j (k) = θ

ij
j , (18)

where R
ij
j (ij = 1, . . . , Nj) is the ij-th rule for the j-th input variable. The linguistic terms A

ij
j

define the MFs µ
A

ij
j

, and output y
ij
j is a function dependent of consequent parameters θ

ij
j .

The univariate model yj is defined as follows:

yj(k) =
Nj

∑
ij=1

ω
ij
j (k)θ

ij
j , (19)

where ω
ij
j is the normalized MF given by the following:

ω
ij
j (k) =

µ
A

ij
j

(k)

∑
Nj
ij=1 µ

A
ij
j

(k)
. (20)
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The global output of GAM-ZOTS is given by the following:

ŷ(k) = y0 +
n

∑
j=1

yj(k), (21)

where y0 is the model bias. The MFs from GAM-ZOTS are complementary triangular
functions [21], defined a priori by fixing the number of rules for each univariate model,
totaling N = n · Nj global rules. Finally, the learning of the consequent parameters goes
through the Backfitting Algorithm [22]. More details of the GAM-ZOTS model are presented
in [13].

2.5.3. iMU-ZOTS

The iterative learning of multiple univariate zero-order T-S fuzzy systems (iMU-
ZOTS) is the extension of GAM-ZOTS applied to the antecedent part [13]. Unlike GAM-
ZOTS, which fixes the number of rules, iMU-ZOTS initializes with Nj = 2 MFs (rules) for
each input variable xj. Two complementary triangular MFs are defined considering the
minimum x−j and maximum x+j values of xj as centers. Each sample xj(k) (k = 1, . . . , K) is
evaluated to determine whether it is well represented by the existing fuzzy rules, using the
following novelty detection mechanism:

M
ij
j = exp

(
−
∣∣∣xj(k)− v

ij
j (k − 1)

∣∣∣), (22)

where v
ij
j (k − 1) is the center of ij-th MF for j-th input variable from previous instant k − 1.

The creation of new rules depends on two criteria defined to assess whether the
candidate sample is well represented in the existing rules (Criterion 1) and whether it can
be considered as the center of the new MF based on the nearest MF (Criterion 2).

Criterion 1 (Novelty detection). To determine the affinity of candidate sample xj(k) to the current

model, the values of M
ij
j from Equation (22) are evaluated in the following criterion:

Mmax
j =

1, if max
Nj
ij=1 M

ij
j ≤ Mth

j ,

0, otherwise,
(23)

where 0 < Mth
j < 1 is a threshold for xj. If Mmax

j = 1, xj(k) is well represented by current model.
In case of Mmax

j = 0, xj(k) does not fit into any rules and is considered new.

Criterion 2 (Minimal distance). To minimize overfitting due to rules that are closely similar to
each other, the following criterion is defined to evaluate the distance between two nearest MFs:∣∣∣bcand

j − bnear
j

∣∣∣ > bth
j , (24)

where bcand
j = xj(k) is the center of the candidate MF (to be added) and bnear

j is the center of its

nearest MF. The threshold bth
j determine the minimal distance for the rule Rcand

j to be considered
new, and can be defined based on the maximum amount of MFs, Nmax

j , allowed for input xj.

A new fuzzy rule Rnew
j is created (Rcand

j 7→ Rnew
j ), with its respective MF Anew

j , when
Criteria 1 and 2 are met. Thus, the parameters of the new MF, as well as those of the two
adjacent MFs Ale f t

j and Aright
j , are updated following the example shown in Figure 3.
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Figure 3. Example of adding a new MF during learning of the iMU-ZOTS model.

Before proceeding to the next samples, the centers of the existing MFs are updated
as follows:

v
ij
j (k) = v

ij
j (k − 1) +

xj(k)− v
ij
j (k − 1)

Υ
ij
j (k)

(
µ

A
ij
j

(k)

)m

, (25)

Υ
ij
j (k) = Υ

ij
j (k − 1) +

(
µ

A
ij
j

(k)

)m

, (26)

where m > 1 is the fuzzification degree, and Υ
ij
j (k) indicates the accumulation of MFs

until k-th sample associated to xj, with Υ
ij
j (0) = 0. More details of iMU-ZOTS model are

presented in [13].

2.6. Proposed Framework Algorithm

Algorithm 1 outlines the setup of the proposed framework.

Algorithm 1 Setup of the proposed framework.

1. Define the set of key variables (Yp, p = 1, . . . , s) to be predicted and their collecting
points. In this work, 10 (s = 10) key variables were defined: TSS(3), SNH(3), SNH(10),
SNH(13), SNO(3), SNO(10), SNO(13), SO(10), BOD(13) and COD(13), ordered from
p = 1 to p = 10, respectively;

2. Define the set of thresholds for the variable selection (Pearson’s correlation), thr =
[thr1, . . . , thrmax];

3. Define the set of parameters (mp = 1, . . . , H) of each model (FCM-LSM, GAM-ZOTS,
and iMU-ZOTS) to be learned. In this work, the set of parameters was set as follows:
• FCM-LSM: N = [3, 5, 7, 10].
• GAM-ZOTS: N = [2, 3, 5, 7, 10].
• iMU-ZOTS: Mth

j = [0.5, 0.7, 0.8, 0.9].

4. For each key variable to be predicted (Yp):

(a) Read data from the collected points related to variable Yp;
(b) Obtain the correlation between input variables (Xj) and variable Yp;
(c) For each threshold, thrk = thr1, . . . , thrmax:
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Algorithm 1 Cont.

i. Select the input variables whose correlation is higher than the threshold
r > thrk;

ii. Divide the dataset into training and testing. In this work, each dataset
was partitioned into 70% for training and 30% for testing;

iii. For each model, model = 1, . . . , 3 (models FCM-LSM, GAM-ZOTS, and
iMU-ZOTS, respectively):
A. For each combination of model parameters, mp = 1, . . . , H:

• Learn the respective model;
• Calculate the Mean Squared Error using Equation (27).

B. Save the best model’s setup of Yp.

(d) Save the best model for Yp.

3. Results and Discussion
This section presents the results and the respective analyses regarding the accuracy

and interpretability of the models.

3.1. Experimental Setup

The fuzzy methods were implemented using {MATLAB, version R2023b, where
FCM-LSM was developed from scratch, and for the GAM-ZOTS and iMU-ZOTS mod-
els, their respective toolboxes were used (GAM-ZOTS and iMU-ZOTS toolboxes: https:
//www.jeromemendes.com/software, accessed on 20 March 2025). The parameters of
the GAM-ZOTS and iMU-ZOTS models were chosen according to the ones tested in the
original works that proposed these models and according to other works that use these
models. Similarly, it was chosen for the FCM-LSM model, following the values commonly
used in the literature. However, here we set up different combinations to determine the
best configuration for each model by trial and error:

• FCM-LSM: number of clusters N = [3, 5, 7, 10] and fuzzification degree m = 2.
• GAM-ZOTS: number of fuzzy rules used N = [2, 3, 5, 7, 10], maximum number of

iterations limit = 100, and termination condition ϵ = 10−5.
• iMU-ZOTS: Mth

j = [0.5, 0.7, 0.8, 0.9], bth
j = |x+j − x−j |/Nmax

j (for j = 1, . . . , n),
Nmax

j = 10, maximum number of iterations limit = 100, termination condition

ϵ = 10−5, and fuzzification degree m = 2.

For the development of the proposed work, the Benchmark Simulator Model 2
(BSM2) [23] was used. The BSM2 is a simulation environment defining the plant lay-
out, the simulation model, influence loads, test procedures, and evaluation criteria. The
use of BSM2 is widely accepted by the scientific community and has already been used in
several studies, such as optimization processes [24], variable prediction [25], and process
control [26]. For the evaluation of the proposed framework, to predict each desired variable,
609 days are considered, where the first 245 days are used for stabilization of the plant. The
sampling frequency is 15 min, totaling 58464 samples.

As mentioned in Section 2.4, each input variable’s correlation with the target variable
was evaluated against a predefined set of thresholds. The following thresholds were
defined: thr = [0.3, 0.5, 0.7, 0.85]. The Pearson correlation thresholds adopted in this study
were chosen due to their frequent use in the literature to represent different levels of
association between variables [27], and are based on [28]. This gradation allows for a
progressive analysis of the correlation between input variables and the target variable to be
predicted. Variable correlations exceeding a given threshold (r > thrk ∈ thr) were selected
as input variables to be used in the prediction model. As a result, four datasets were

https://www.jeromemendes.com/software
https://www.jeromemendes.com/software
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constructed for each predicted variable (one for each thrk), except for the variables SNH(10)
and COD(13), where it was only possible to build two datasets since there were no input
variables with a correlation above the predefined threshold. A total of 36 datasets were
generated and evaluated across different models. For training and testing, each dataset
was partitioned into 70% for training and 30% for testing.

3.2. Results

The results were evaluated through the Mean Squared Error (MSE) metric, described
by the following Equation (27), where y(k) and ŷ(k) are the real and estimated target at the
instant of time k, and K is the total number of samples.

MSE =
1
K

K

∑
k=1

(y(k)− ŷ(k))2 (27)

Table 1 presents the prediction results and interpretability of the different models for
each dataset. The best MSE results are shown in the MSE columns, where column MSE
represents the average MSE value. The optimal number of fuzzy rules, presented in column
N, is highlighted in bold.

Considering the MSE error values presented, it is evident that the FCM-LSM method
achieved the lowest error values for nine variables, while the iMU-ZOTS method exhibited
the best performance for only one variable, SNH(10). Consequently, it can be concluded that
FCM-LSM is the most effective method, producing the lowest MSE error for the majority
of variables.

The correlation threshold value, represented in column thrl , is a key parameter in
this study, as it determines the selection of input variables used to construct the model.
Four different threshold values were tested, and the results showed that as the threshold
increased, the number of selected variables (column n) decreased, showing an inversely
proportional relationship. Upon analyzing the results, it becomes clear that the best results
are typically achieved when the threshold value is at its lowest, allowing the selection of
more input variables and making the model more complex. Table 1 presents the number of
fuzzy rules associated with the MSE results, along with the average rule count per method,
which can be seen in column N, and the threshold value Mth

j at which the optimal results
for the iMU-ZOTS method were achieved. The values corresponding to the best MSE result
are highlighted in bold, while the best results from the other two models are underlined.

The number of fuzzy rules used by each method is a key factor influencing model
interpretability, which is particularly important for WWTP operators who require clear
insights for decision-making. While accurate variable prediction is essential for efficient
operation, helping to minimize resource waste and maintain water quality, model com-
plexity can limit practical application. The analysis of Table 1 indicates that FCM-LSM
achieves the lowest MSE values for most variables but relies on a high number of rules,
and the model presents a much higher complexity on the antecedent and consequent parts,
making it a less interpretable model. Therefore, achieving a balance between accuracy and
interpretability is crucial for developing effective and practical models.
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Table 1. Results of the tests conducted with the three models. Yp denotes the target variable, while thrl represents the correlation threshold value. MSE is the best error
value for each dataset and MSE represents the average prediction error (MSE) of each model. n indicates the number of input variables using the respective correlation
threshold. N corresponds to the number of fuzzy rules used, and N refers to the average number of fuzzy rules applied. Mth

j represents the threshold value used by the
iMU-ZOTS model. The best error value results for the models and the N values are highlighted in bold, whereas the best results for the other models are underlined.

Yp thrl n
FCM-LSM GAM-ZOTS iMU-ZOTS

MSE MSE N N MSE MSE N N MSE MSE N N Mth
j

TSS(3) 0.3 18 64.46 65.61 10

10

84.53 91.06 7

9.35

82.39 82.99 7.11

6.43

0.5
0.5 12 77.88 78.63 10 135.66 139.13 10 134.11 135.07 6.5 0.5
0.7 9 87.44 87.96 10 166.97 171.35 10 165.31 167.08 6.11 0.5
0.85 8 90.97 91.29 10 210.53 215.13 10 210.07 210.68 6 0.5

SNH(3) 0.3 18 1.82 × 10−18 1.31 × 10−17 5

3.5

0.14 0.15 2

2

1.13 × 10−4 3.57 × 10−4 6.6

7.16

0.9
0.5 16 1.36 × 10−18 1.21 × 10−17 3 0.13 0.14 2 1.28 × 10−4 5.03 × 10−4 6.5 0.9
0.7 11 6.99 × 10−20 3.73 × 10−19 3 0.06 0.07 2 1.9 × 10−8 5.08 × 10−5 7.82 0.5
0.85 3 1.06 × 10−23 5.99 × 10−22 3 7.9 × 10−12 3.61 × 10−10 2 1.29 × 10−12 1.71 × 10−12 7.66 0.5

SNH(10) 0.3 15 0.065 0.069 10 10 0.043 0.071 10 10 0.038 0.038 7.93 7.97 0.5
0.5 5 0.053 0.073 10 0.059 0.088 10 0.058 0.06 8 0.8
0.7 - - - - - - - - - - - - - -
0.85 - - - - - - - - - - - - - -

SNH(13) 0.3 15 0.025 0.028 10

5.75

0.028 0.029 7

7.5

0.027 0.027 8.6

8.86

0.5
0.5 6 0.028 0.029 7 0.03 0.032 3 0.031 0.031 8.8 0.5
0.7 1 0.077 - 3 0.076 0.077 10 0.076 0.076 9 0.5
0.85 1 0.077 - 3 0.076 0.077 10 0.076 0.076 9 0.5

SNO(3) 0.3 13 6.44 × 10−26 1.64 × 10−19 3

4.5

1.21 × 10−5 1.57 × 10−5 3

4.25

2.49 × 10−9 4.57 × 10−9 7.92

8.51

0.8
0.5 10 1.45 × 10−26 1.97 × 10−19 3 1.24 × 10−5 1.85 × 10−5 2 1.30 × 10−9 1.63 × 10−9 8.1 0.8
0.7 7 1.93 × 10−28 8.19 × 10−28 5 1.16 × 10−5 1.33 × 10−5 2 2.29 × 10−10 2.44 × 10−10 9 0.9
0.85 4 2.92 × 10−28 4.62 × 10−28 7 8.88 × 10−12 1.65 × 10−12 10 1.46 × 10−12 1.49 × 10−12 9 0.5

SNO(10) 0.3 6 0.14 0.14 10

4.75

0.18 0.18 10

7.5

0.18 0.18 8.33

8.08

0.9
0.5 1 0.97 - 3 0.97 0.97 2 0.97 0.97 8 0.8
0.7 1 0.97 - 3 0.97 0.97 2 0.97 0.97 8 0.8
0.85 1 0.97 - 3 0.97 0.97 2 0.97 0.97 8 0.8

SNO(13) 0.3 4 0.12 0.13 10

8.25

0.14 0.14 7

7

0.14 0.14 8.75

8.88

0.9
0.5 4 0.12 0.13 10 0.14 0.14 7 0.14 0.14 8.75 0.9
0.7 1 0.19 - 10 0.19 0.19 7 0.19 0.19 9 0.7
0.85 1 0.19 - 3 0.19 0.19 7 0.19 0.19 9 0.7

SO(10) 0.3 4 0.016 0.018 10

8.75

0.017 0.019 10

7.75

0.017 0.017 8.75

8.94

0.8
0.5 1 0.032 - 5 0.031 0.032 7 0.031 0.031 9 0.5
0.7 1 0.032 - 10 0.031 0.032 7 0.031 0.031 9 0.5
0.85 1 0.032 - 10 0.031 0.032 7 0.031 0.031 9 0.5

BOD(13) 0.5 13 0.004 0.004 10 0.006 0.008 10 0.006 0.006 6.85 0.8
0.7 8 0.004 0.005 10 0.008 0.010 10 0.007 0.008 6.25 0.8
0.85 1 0.097 - 3 0.097 0.098 2 0.097 0.097 3 0.8

COD(13) 0.3 17 0.27 0.29 10 6.5 0.39 0.49 10 10 0.41 0.42 7.76 7.38 0.5
0.5 9 6.75 7.05 3 7.49 7.76 10 7.28 7.34 7 0.7
0.7 - - - - - - - - - - - - - -
0.85 - - - - - - - - - - - - - -
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The optimal results obtained by the three methods were analyzed to assess both the
accuracy and interpretability of the models. Additionally, methods that did not achieve
the lowest error for each variable were considered, emphasizing the tradeoff between
interpretability and accuracy. A simpler model, characterized by fewer rules, was preferred
if its error rate remained reasonably close to the best value achieved for a given variable. To
conduct a more detailed analysis of this balance, two variables, SNH(3) and SNO(3), were
selected as case studies. For SNH(3), a threshold value of 0.85 was applied to the FCM-LSM
and GAM-ZOTS methods, while a threshold of 0.5 was used for iMU-ZOTS. For SNO(3),
the threshold values varied across methods: 0.85 for FCM-LSM, 0.7 for GAM-ZOTS, and
0.3 for iMU-ZOTS. Figure 4 presents the prediction results for the variable SNH(3) obtained
using the different methods.

0 200 400 600 800 1000
Sample Number, k

20

25

30

35

40

45

50

55

Va
lu

e

Real output
FCM-LSM
GAM-ZOTS
iMU-ZOTS

Figure 4. Prediction results for the variable SNH(3).

3.3. Accuracy vs. Interpretability: SNH(3)

Figure 4 shows the prediction results of the fuzzy models used in this study for variable
SNH(3).

An analysis of Figure 4 reveals that the differences in predictions among the various
methods are minimal, with no statistically significant discrepancies observed. Therefore,
slightly less accurate models may be preferable if they have better interpretability.

3.3.1. FCM-LSM

The FCM-LSM model learned for SNH(3) represents each of the three input variables
using three fuzzy rules. Figure 5 illustrates the membership functions (MFs) associated
with these input variables.

The fuzzy rules are described by the following:

R1 : IF x1(k) is A1
1 AND x2(k) is A1

2 AND x3(k) is A1
3

THEN y1(k) = 1 + 1.37 · 10−11 · x1(k) + 1.21 · 10−13 · x2(k) + 4.26 · 10−14 · x3(k),
R2 : IF x1(k) is A2

1 AND x2(k) is A2
2 AND x3(k) is A2

3
THEN y2(k) = 1 + 7.66 · 10−12 · x1(k)− 1.97 · 10−13 · x2(k)− 8.75 · 10−14 · x3(k),

R3 : IF x1(k) is A3
1 AND x2(k) is A3

2 AND x3(k) is A3
3

THEN y3(k) = 1 + 5.69 · 10−13 · x1(k)− 1.56 · 10−13 · x2(k)− 1.88 · 10−14 · x3(k).
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Figure 5. Membership functions of the FCM-LSM for SNH(3): (a) x1; (b) x2; (c) x3.

3.3.2. GAM-ZOTS

The GAM-ZOTS method represents each of the three selected input variables using
two fuzzy rules. Figure 6 illustrates the MFs corresponding to these input variables.

The fuzzy rules for the variable x1 are defined as follows:

R1
1 : IF x1(k) is A1

1 THEN y1
1(k) = −2.85 · 10−6,

R2
1 : IF x1(k) is A2

1 THEN y2
1(k) = 4.10 · 10−6,

for the variable x2 by

R1
2 : IF x2(k) is A1

2 THEN y1
2(k) = −1.32 · 10−5,

R2
2 : IF x2(k) is A2

2 THEN y2
2(k) = 2.23 · 10−5,

and for the variable x3 by

R1
3 : IF x3(k) is A1

3 THEN y1
3(k) = −24.81,

R2
3 : IF x3(k) is A2

3 THEN y2
3(k) = 30.97.
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Figure 6. Membership functions of the GAM-ZOTS for SNH(3): (a) x1; (b) x2; (c) x3.

3.3.3. iMU-ZOTS

The optimal model using the iMU-ZOTS method is characterized by 16 selected input
variables, with an average of 6.5 fuzzy rules per variable, calculated as the total number
of fuzzy rules divided by the number of input variables. The model comprises a total of
N = 104 fuzzy rules, with each of the 16 variables contributing the following number of
rules: N1 = 6, N2 = 7, N3 = 6, N4 = 9, N5 = 8, N6 = 8, N7 = 9, N8 = 6, N9 = 7, N10 = 5,
N11 = 3, N12 = 4, N13 = 8, N14 = 8, N15 = 6, and N16 = 4. Figure 7 presents the MFs for
all 16 input variables. Due to the large number of rules and space constraints, the rules of
the iMU-ZOTS method are not described here.
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Figure 7. Membership functions of the iMU-ZOTS method for the variable SNH(3): (a) x1; (b) x2;
(c) x3; (d) x4; (e) x5; (f) x6; (g) x7; (h) x8; (i) x9; (j) x10; (k) x11; (l) x12; (m) x13; (n) x14; (o) x15; (p) x16.

3.4. Accuracy vs. Interpretability: SNO(3)

Another analyzed variable is SNO(3). Figure 8 presents the prediction results for
SNO(3) obtained using the three methods.

All methods produce comparable results with no significant differences in accuracy,
indicating that any of them can achieve reliable performance. Consequently, evaluating
interpretability becomes essential, which requires analyzing the number of fuzzy rules
employed by each method.
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Figure 8. Prediction results for the variable SNO(3).

3.4.1. FCM-LSM

The learned FCM-LSM model is characterized by four input variables and a set of
seven fuzzy rules. Figure 9 presents the MFs corresponding to the four input variables.
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Figure 9. Membership functions of the FCM-LSM for SNO(3): (a) x1; (b) x2; (c) x3; (d) x4.

The fuzzy rules are described by the following:

R1 : IF x1(k) is A1
1 AND x2(k) is A1

2 AND
x3(k) is A1

3 AND x4(k) is A1
4

THEN y1(k) = 1− 4.28 · 10−13 · x1(k) + 2.26 · 10−13 · x2(k) + 4.92 · 10−15 · x3(k) + 1.67 ·
10−12 · x4(k),

R2 : IF x1(k) is A2
1 AND x2(k) is A2

2 AND
x3(k) is A2

3 AND x4(k) is A2
4

THEN y2(k) = 1+ 7.88 · 10−15 · x1(k) + 3.03 · 10−14 · x2(k) + 3.29 · 10−17 · x3(k)− 1.50 ·
10−13 · x4(k),

R3 : IF x1(k) is A3
1 AND x2(k) is A3

2 AND
x3(k) is A3

3 AND x4(k) is A3
4

THEN y3(k) = 1− 1.75 · 10−13 · x1(k) + 4.85 · 10−14 · x2(k) + 1.79 · 10−15 · x3(k) + 4.23 ·
10−13 · x4(k),

R4 : IF x1(k) is A4
1 AND x2(k) is A4

2 AND
x3(k) is A4

3 AND x4(k) is A4
4

THEN y4(k) = 1+ 1.33 · 10−15 · x1(k)− 3.34 · 10−14 · x2(k)− 1.02 · 10−16 · x3(k) + 3.10 ·
10−13 · x4(k),

R5 : IF x1(k) is A5
1 AND x2(k) is A5

2 AND
x3(k) is A5

3 AND x4(k) is A5
4
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THEN y5(k) = 1− 4.29 · 10−14 · x1(k) + 1.31 · 10−13 · x2(k) + 1.68 · 10−15 · x3(k) + 9.22 ·
10−13 · x4(k),

R6 : IF x1(k) is A6
1 AND x2(k) is A6

2 AND
x3(k) is A6

3 AND x4(k) is A6
4

THEN y6(k) = 1− 2.97 · 10−13 · x1(k) + 3.37 · 10−13 · x2(k) + 5.68 · 10−15 · x3(k) + 2.03 ·
10−12 · x4(k),

R7 : IF x1(k) is A7
1 AND x2(k) is A7

2 AND
x3(k) is A7

3 AND x4(k) is A7
4

THEN y7(k) = 1− 5.02 · 10−13 · x1(k) + 3.79 · 10−13 · x2(k) + 7.09 · 10−15 · x3(k) + 3.01 ·
10−12 · x4(k).

3.4.2. GAM-ZOTS

The GAM-ZOTS method represents each of the seven selected input variables using
two fuzzy rules. Figure 10 illustrates the MF corresponding to these input variables.
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Figure 10. Membership functions of the GAM-ZOTS for SNO(3): (a) x1; (b) x2; (c) x3; (d) x4; (e) x5;
(f) x6; (g) x7.

The fuzzy rules for the variable x1 in the GAM-ZOTS model are defined as follows:

R1
1 : IF x1(k) is A1

1 THEN y1
1(k) = 0.02,

R2
1 : IF x1(k) is A2

1 THEN y2
1(k) = −0.06,

for the variable x2 by

R1
2 : IF x2(k) is A1

2 THEN y1
2(k) = 0.03,

R2
2 : IF x2(k) is A2

2 THEN y2
2(k) = −0.13,

for the variable x3 by

R1
3 : IF x3(k) is A1

3 THEN y1
3(k) = −0.05,

R2
3 : IF x3(k) is A2

3 THEN y2
3(k) = 0.18,

for the variable x4 by

R1
4 : IF x4(k) is A1

4 THEN y1
4(k) = 0.04,

R2
4 : IF x4(k) is A2

4 THEN y2
4(k) = −0.01,

for the variable x5 by

R1
5 : IF x5(k) is A1

5 THEN y1
5(k) = −0.03,
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R2
5 : IF x5(k) is A2

5 THEN y2
5(k) = 0.07,

for the variable x6 by

R1
6 : IF x6(k) is A1

6 THEN y1
6(k) = −0.03,

R2
6 : IF x6(k) is A2

6 THEN y2
6(k) = 0.11,

and for the variable x7 by

R1
7 : IF x7(k) is A1

7 THEN y1
7(k) = −0.12,

R2
7 : IF x7(k) is A2

7 THEN y2
7(k) = 0.33.

3.4.3. iMU-ZOTS

The iMU-ZOTS model is characterized by 13 selected input variables, with an average
of 7.92 fuzzy rules per variable. This average is calculated by dividing the total number
of rules across all variables by the number of variables. The model consists of a total of
N = 103 fuzzy rules, distributed as follows: N1 = 9, N2 = 9, N3 = 9, N4 = 9, N5 = 5,
N6 = 4, N7 = 10, N8 = 7, N9 = 8, N10 = 10, N11 = 10, N12 = 7 and N13 = 6. Figure 11
illustrates the membership functions for the 13 input variables. Due to the large number of
rules and the limited space available, the rules are not described here.
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Figure 11. Membership functions of the iMU-ZOTS for SNO(3): (a) x1; (b) x2; (c) x3; (d) x4; (e) x5;
(f) x6; (g) x7; (h) x8; (i) x9; (j) x10; (k) x11; (l) x12; (m) x13.

3.5. Accuracy vs. Interpretability: Discussion

After analyzing the results for the two target variables, it is evident that although
the FCM-LSM method exhibits a lower error value compared to the other methods, the
difference in prediction accuracy is minimal. Additionally, FCM-LSM delivers the best
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results, although with more complex rules than the other methods. Models with a high
number of rules, a high number of membership functions, or numerous input variables
in the antecedent part tend to be more complex and challenging for operators to interpret.
In the context of WWTPs, operators need to understand the models easily in order to
make informed decisions throughout the treatment process. An industrial process model
is better when it is interpretable, allowing engineers, operators, and decision-makers to
understand how and why the model is making predictions or recommendations. An
interpretable system, built on familiar linguistic terms, enables operators to build trust in
the model’s recommendations, which in turn facilitates rapid identification of equipment
malfunctions and process anomalies and strengthens confidence in the data that support
decision-making (troubleshooting and diagnostics). Moreover, operators and engineers are
more likely to validate, trust, and adopt a model if they can understand its logic, especially
in industrial environments. And interpretable models help encode and transfer process
knowledge across teams and generations of workers. By tracing each action back to a
small set of human-readable rules, operators can quickly diagnose faults, adjust settings,
and ensure that plant operations remain both compliant with environmental regulations
and aligned with sustainability goals. In this context, GAM-ZOTS and iMU-ZOTS are
more advantageous than FCM-LSM because they have rules with univariable antecedents,
allowing the operators to analyse the individual impact of each input variable on the key
variables. However, iMU-ZOTS provided greater variability in the number of rules for each
input, which increased its overall complexity.

For the variable SNH(3), the FCM-LSM method obtains an MSE value of 1.06 · 10−23

with 3 associated fuzzy rules. GAM-ZOTS produces an MSE = 7.90 · 10−12, 7.46 · 1013%
higher than the FCM-LSM error, using two univariate fuzzy rules per variable. Meanwhile,
iMU-ZOTS results in an MSE of 1.28 · 10−4, 1.21 · 1021% higher than the FCM-LSM error,
and 6.5 fuzzy rules per variable. Since the predictions made by all three methods are
identical (as shown in Figure 4), the method with the least complexity should be preferred.
In this case, GAM-ZOTS is the best choice for this variable. However, FCM-LSM could also
be a viable option due to its lower error and fewer fuzzy rules.

For the SNO(3) variable, FCM-LSM achieves an MSE of 2.92 · 10−28 with 7 fuzzy rules.
In comparison, GAM-ZOTS produces an MSE of 1.16 · 10−5, which is 3.97 · 1024% higher
than the FCM-LSM error, with 2 fuzzy rules per variable. The iMU-ZOTS method produces
an MSE of 2.49 · 10−9, which is 8.53 · 1020% higher than FCM-LSM, with an average of
7.92 fuzzy rules per variable. Analysis of Figure 8 reveals that the differences in the predic-
tions for this variable across the methods are minimal. Therefore, the most suitable method
for this variable should be selected based on the model’s simplicity. In this case, GAM-
ZOTS offers the best balance between prediction accuracy and interpretability, providing
accurate results while remaining easy for operators to understand.

4. Conclusions
This study aimed to develop an interpretable digital monitoring system for key water-

line variables in WWTPs. Through the use of fuzzy-based models, the proposed approach
enhances process monitoring by providing a transparent and explainable framework for
decision-making. The study compared three fuzzy-based models, evaluating their accu-
racy and interpretability, which are critical factors for practical implementation in WWTP
operations. To construct the datasets, data were collected from 14 specific points along
the waterline of the WWTP. These points were selected to capture essential process vari-
ables, ensuring comprehensive monitoring throughout the different treatment stages. The
selected variables included TSS, SNH , SO, SNO, BOD, and COD. The datasets were built
using distinct sets of input variables at each collection point, and the models were trained
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and tested to optimize both accuracy and interpretability. The results demonstrate that
while FCM-LSM achieves the highest accuracy, its complexity limits its interpretability. On
the other hand, GAM-ZOTS and iMU-ZOTS offer a better tradeoff between accuracy and
simplicity, making them more suitable for real-world applications where interpretability
is essential for operational decision-making. The findings highlight the importance of
balancing predictive accuracy with model complexity to ensure that the models are more
interpretable and the operators can effectively utilize the digital monitoring system. As
future work, other machine learning models will be applied to the same dataset to assess
whether alternative methods offer different results or advantages compared to fuzzy-based
models. This could provide further insights into the robustness and applicability of the
proposed framework.
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