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Abstract: This study proposes a novel approach for predicting the output behaviors of the Pep- 1

perl+Fuchs 3RG6232-3JS00-PF ultrasonic sensor. The sensor, integrated into the Festo MPS-PA 2

Didactic System, serves to monitor the water level in a tank, facilitating water extraction to bottles 3

delivered via a conveyor belt. This modeling approach represents the initial phase in the creation of a 4

digital twin of the physical sensor, providing the capability for users to observe the sensor’s response 5

and forecast its life cycle for maintenance objectives. This study utilizes the Festo MPS-PA Compact 6

Didactic system and support vector regression (SVR) for data acquisition (DAQ), preprocessing, 7

model training with hyper-parameter optimization. The objective of this modeling approach is to 8

establish a digital framework for transition towards Industry 4.0. It holds the potential for creating 9

a digital counterpart of the entire MPS-PA System when combines the proposed sensor modeling 10

technique with computer-assisted design (CAD) software such as Siemens NX in the future. This 11

would enable users to oversee the entire process in a three-dimensional visualization engine such 12

as Tecnomatix Plant Simulation. This research significantly contributes to the comprehension and 13

application of digital twins in the realm of mechatronics and sensor systems technology. It also 14

underscores the importance of digital twins in enhancing the efficiency and predictability of sensor 15

systems. The method used in this paper involves predicting the rate of change (RoC) of the water 16

level and then integrating this rate to estimate the actual water level, providing a robust approach for 17

sensor data modeling and digital twin creation. The result shows a promising 6.99% error percentage. 18

19

Keywords: Support Vector Regression; Digital Twin; Virtual Sensor; Kernel Selection; Hyperparame- 20

ter Optimization. 21

1. Introduction 22

Industrial automation thrives on precise and reliable measurements. Ultrasonic sen- 23

sors have emerged as a cornerstone technology for diverse tasks, from meticulously gauging 24

liquid levels in tanks to measuring material thickness and determining object proximity 25

with high accuracy. Their operation revolves around emitting high-frequency sound waves 26

and measuring the time it takes for echoes to return. This allows for precise distance calcu- 27

lations and characterization of material properties. Some notable achievements include the 28

development of advanced ultrasonic imaging techniques and the integration of ultrasonic 29

sensors with automated control systems to enhance process efficiency. 30

Beyond these sensor advancements, machine learning is playing a crucial role in en- 31

hancing the performance of industrial measurements using ultrasonic sensors. By analyzing 32

the complex data generated by these sensors, machine learning can identify subtle patterns 33

and trends that would be difficult to discern with traditional methods [1]. Techniques such 34

as neural networks, support vector machine (SVM), and decision trees have been employed 35
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to optimize measurement accuracy and detect anomalies. Furthermore, machine learning 36

models can be trained to predict equipment wear and tear based on sensor data, allowing 37

for scheduled maintenance and preventing unplanned downtime. 38

This research delves into the exciting realm of data-driven approaches, specifically 39

by leveraging machine learning within a digital twin framework. Digital twins are virtual 40

representations of physical assets and systems that integrate real-time data from sensors 41

and other sources. Traditionally, these systems relied on physical-based models to describe 42

the behaviors of sensors and actuators. These models rely on engineering principles and 43

require significant upfront knowledge of the system dynamics. However, a recent shift is 44

happening in the state-of-the-art of digital twins. There’s growing interest in data-driven 45

approaches that leverage real-world data to describe sensor and actuator behavior [2]. This 46

study proposes exploring data-driven approaches within a digital twin framework, aiming 47

to investigate on improving the overall performance and reliability of digital twins across 48

various industrial applications. 49

The digital twin was constructed within the Siemens TIA Portal software using the 50

Festo MPS PA Didactic System. TIA Portal’s WinCC Runtime Advanced serves as the 51

development environment for the PLC program controlling the station, including DAQ 52

from the dosing tank’s ultrasonic sensor. This research aims to develop a SVR model for 53

predicting future liquid levels using this sensor data. Data will be collected through TIA 54

Portal and undergo pre-processing to ensure quality for model training. The SVR model 55

will be trained and evaluated using metrics like Mean-squared error (MSE) and R-squared, 56

with hyperparameter tuning employed to optimize prediction accuracy. Importantly, this 57

research explores the potential for real-time control by integrating the trained SVR model 58

within the digital twin. This could allow for using predicted water levels to adjust process 59

parameters in real-time, such as regulating pump operation or valve positions, ultimately 60

optimizing dosing tank liquid levels. 61

Previous research has explored the application of machine learning techniques in 62

various industrial settings, including predictive maintenance, quality control, and pro- 63

cess optimization. For example, developing digital twins to present the framework and 64

workflow of the data-driven models for wind turbines [3], using digital twin technology 65

for production optimization in petrochemical industry [4]. However, the integration of 66

machine learning with digital twins to enhance sensor-based predictions and process con- 67

trol within industrial automation training systems remains a relatively unexplored area. 68

This study aims to contribute to this emerging field by demonstrating the potential of SVR 69

models in predicting liquid levels and exploring the creation of a digital twin framework 70

for the Festo MPS PA bottling station. 71

The study achieved promising initial results. The SVR model integrated within the 72

Festo MPS PA Didactic System and TIA Portal showed potential for effectively predicting 73

liquid level. Additionally, exploring a data-driven, sensor-agnostic prediction approach and 74

a virtual entity framework within the TIA Portal suggests promising future developments 75

in digital twin technology for industrial automation training systems. 76

2. Related Work 77

Digital twins have emerged as a critical technology for enhancing industrial processes 78

through cyber–physical integration. A comprehensive review by Tao et al. [5] provides a 79

comparative analysis of cyber-physical systems (CPS) and digital twins, highlighting the 80

subtle yet important differences between these two concepts. While both technologies aim 81

to achieve seamless interaction between the physical and digital worlds, the study empha- 82

sizes the distinct capabilities and applications of digital twins in smart manufacturing. The 83

current research aligns with this analysis by utilizing a digital twin framework, specifically 84

tailored for predictive modeling in process automation, thus extending the scope of digital 85

twin applications beyond traditional CPS. 86

Kammerer et al. [6] applied digital twins for anomaly detection in manufacturing 87

systems, focusing on real-time data analysis to enhance predictive maintenance strategies. 88
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Figure 1. Overview of the proposed modeling method.

Although this approach effectively identified performance deviations, it did not incorporate 89

machine learning models for continuous variable prediction, such as water levels. By 90

integrating SVR to predict the RoC of water levels, the current study addresses this gap, 91

particularly in mitigating error accumulation over time. 92

Chryssolouris et al. [7] explored digital twin technology for estimating the remaining 93

useful life (RUL) of manufacturing equipment, leveraging physics-based simulation mod- 94

els. This method provided accurate predictions without disrupting operations, showcasing 95

the potential of digital twins in predictive maintenance. However, the approach remained 96

reliant on traditional simulations, whereas the current study adopts a data-driven method- 97

ology using radial basis function (RBF) SVR, which enhances prediction accuracy through 98

parameter optimization. 99

Similarly, Putawa et al. [8] investigated the use of digital twins for visualizing and 100

controlling energy efficiency in manufacturing environments. While effective in system 101

control, the study focused primarily on visualization rather than predictive analytics. The 102

current research shifts towards predictive capabilities, employing SVR within a digital 103

twin framework to forecast water levels accurately, thereby enhancing process control and 104

monitoring. 105

In summary, this research advances the application of digital twins by integrating RBF 106

SVR for RoC prediction and optimizing SVR parameters to minimize error accumulation, 107

thereby addressing specific challenges in process automation and control. This approach 108

not only builds upon existing studies but also contributes to the broader field of digital 109

twin technology in industrial settings. 110

3. Methodology 111

This research employs the Festo MPS-PA Didactic Complete System’s bottling sta- 112

tion and SVR to establish a machine learning framework. The primary objective of this 113

framework is to predict the water level in the tank, a measurement typically acquired via 114

an installed ultrasonic sensor. An overview of the system setup is illustrated in Figure 1, 115

providing a detailed visual representation of the configuration. 116

3.1. Festo MPS PA bottling station 117

The Festo MPS PA system comprises four stations: Filtration, Mixing, Reactor, and 118

Bottling. These stations simulate the water filtration process, providing students with prac- 119

tical knowledge in Process automation and Control theory. This is achieved by controlling 120

multiple variables, including pressure, flow rate, temperature, and water level. This study 121

focuses on the Bottling station, which houses the ultrasonic sensor. The aim is to develop a 122

digital twin of this sensor. Further details of the experimental setup will be discussed in 123

Section 4. 124

3.2. Human-Machine Interface 125

The human-machine interface (HMI), designed using Siemens’ WinCC Runtime Ad- 126

vanced, enables operators to control processes and monitor real-time data. It also collects 127
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operational data, including timestamps, sensor readings, and actuator values. While a 128

DAQ device can directly obtain these values, the standard in process automation is to use 129

the HMI. This study adheres to these industrial standards, ensuring its applicability in 130

real-world scenarios. 131

3.3. Support Vector Regression 132

In this study, SVR is implemented as the machine learning technique to forecast the 133

output of an ultrasonic sensor. The accurate prediction serves as an early warning system 134

for potential failures, which are indicated by discrepancies between actual and predicted 135

values [9]. SVR, a robust supervised machine learning algorithm, is specifically designed 136

for regression tasks [10]. It generates predictions based on a set of input data points. 137

Unlike conventional regression methods that strive to minimize the total error between 138

predicted and actual values, SVR constructs a hyperplane in a high-dimensional space that 139

maximizes the error margin around the most influential data points, referred to as support 140

vectors [10]. This focus on margin minimization reduces the influence of outliers, rendering 141

SVR particularly suitable for applications involving noisy sensor data, such as ultrasonic 142

sensor measurements in industrial settings. 143

For this study, a RBF kernel was chosen for the SVR model due to its effectiveness in 144

handling non-linear relationships that might exist between sensor readings and water level. 145

The model development utilized the scikit-learn library [11]. The pre-processed sensor data 146

obtained from the HMI was divided into training and testing sets. The training set was 147

used to train the model, while the testing set evaluated the model’s ability to generalize to 148

unseen data. Hyperparameter tuning, employing a grid search technique, was conducted 149

to identify the optimal combination of parameters that minimize the MSE on the validation 150

set, by using 3 nested for loops to run through all the possible combinations of hyper- 151

parameter for the best result. The performance of the trained model was subsequently 152

evaluated using metrics like MSE and R-squared on the testing set [12]. 153

3.3.1. Explanation of hyperparameters: 154

• Cost (C): Controls the trade-off between maximizing the margin and minimizing 155

the training error. A higher C value allows less margin violation, leading to a more 156

complex model. 157

• Gamma (γ): Influences the width of the RBF kernel function. A smaller gamma results 158

in a wider kernel, leading to smoother decision boundaries. 159

• Epsilon (ε): Defines the width of the insensitive zone within the epsilon-SVR formula- 160

tion. Points within this zone are not penalized in the loss function. 161

By carefully tuning these hyperparameters, the optimal SVR model for predicting 162

water level was determined. 163

4. Experiment Setup and Implementation 164

4.1. Festo MPS PA Bottling Station 165

The Festo MPS PA Bottling Station serves as a valuable training tool in educational 166

settings, specifically designed to introduce students to the intricacies of industrial bottling 167

processes. While not a full-fledged industrial system itself, it effectively simulates the steps 168

involved in filling bottles with liquid. It features the following essential components that 169

mimic a real bottling line (Figure 2): 170

1. Reservoir tank (Area 19 cm× 19 cm, Height 34 cm): This tank functions as the primary 171

storage container for the liquid to be bottled. It has a larger capacity compared to the 172

dosing tank and is refilled periodically to maintain a stable liquid supply. 173

2. Dosing tank (Top diameter: 18 cm, Mid diameter: 13 cm, Bottom diameter: 4 cm, 174

Height 33 cm): This tank acts as a container between the reservoir tank and the 175

bottling line. It has a smaller capacity than the reservoir tank and integrates with an 176

ultrasonic sensor to precisely measure the liquid level in the tank. 177
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Figure 2. Festo MPS PA Bottling Station.

3. Pepperl+Fuchs Ultrasonic Sensor 3RG6232-3JS00-PF: This sensor leverages ultrasonic 178

technology to achieve continuous, non-contact measurement of the liquid level within 179

the dosing tank. The acquired data plays a critical role in the bottling process by 180

enabling real-time monitoring and control, directly contributing to consistent product 181

volume in the filled bottles by preventing overflows or underfills. 182

4. Johnson CM30P7-1 Pump: The Festo MPS PA bottling station employs the Johnson 183

CM30P7-1, a compact and efficient centrifugal pump, to ensure a smooth flow of 184

liquids within the system. This pump leverages a rotating impeller to generate 185

centrifugal force, effectively propelling the liquid through the pump housing. 186

5. Gemü 524D114124DCU solenoid valve: This solenoid valve is utilized for controlled 187

liquid dispensing during the bottling process, and facilitates precise filling through 188

a potential adjustable flow rate mechanism and material compatibility with the pro- 189

cessed liquid. Anti-drip design is incorporated to minimize drips or spills after 190

dispensing, promoting cleanliness and reducing product waste. 191

6. Siemens S7-300 CPU 314C-2PN/DP: The Siemens S7-300 programmable logic con- 192

troller (PLC) plays a central role in automating the Festo MPS PA Bottling station. It 193

receives signals (buttons) and controls actuators (pump, valve) based on its program. 194

The PLC makes the bottling process automated and flexible. 195

4.2. Test Cases and Experiment Settings 196

This section details the design and evaluation procedures employed to assess the SVR 197

model’s performance for water prediction in the Festo MPS PA bottling station simulation 198

(Figure 3). 199

4.2.1. Scenarios. 200

The test cases mimicked real-world bottling conditions by simulating various water 201

level fluctuations that might occur during the filling process. These scenarios involved in 202

manipulating the two buttons (pump and solenoid valve) and the DAQ button to represent 203

diverse operational conditions. 204

• Filling cycle variations: Test cases included different buttons press combinations and 205

duration for the pump and valve buttons. This simulated variations in water transfer 206

volumes between tanks and diverse fillings operations. 207

• DAQ: Users could define the time interval between data points logged in the CSV 208

file via the DAQ button. This allowed for customization based on the desired data 209

granularity for model training. 210
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Figure 3. Experiment Flowchart.

4.2.2. Settings 211

The experiment setup involved a two-pronged approaches: 212

• TIA Portal Program: The operation logic and communication between components 213

were programmed within TIA Portal. This program included functions for: 214

– Button control: Responding to user interaction with the pump and valve buttons, 215

triggering virtual button presses within the WinCC environment. 216

– Sensor communication: Establishing communication with the ultrasonic sensor 217

to retrieve real-time water level readings. 218

– Data transfer: Potentially transferring the collected water level data to WinCC for 219

further processing or visualization. 220

• WinCC Advanced Runtime Environment: WinCC Advanced RT provided the plat- 221

form for controlling the experiment, acquiring data, and triggering data logging scripts. 222

The functionalities within WinCC were achieved through the Visual basic (VB) scripts. 223

4.2.3. SCADA design and Data Logging using VB Script. 224

The experiment leveraged a supervisory control and data acquisition (SCADA) design 225

approach within WinCC Advanced Runtime to control the simulation and acquire data for 226

model development. VB Scripts played a vital role in this SCADA design, acting as the 227

interface between the HMI and the physical components. 228

• SCADA design elements: 229

– HMI control: The VB Scripts provided functionalities displayed on the HMI, such 230

as buttons for pump and valve activation, and a DAQ button. 231

– DAQ: The scripts interacted with the ultrasonic sensor through WinCC tags, 232

retrieving water level readings at a defined interval. 233
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– Data logging: Upon pressing the DAQ button, the script triggered data logging 234

into a CSV file. 235

• VB scripts functionalities: 236

– Simulation and Control: The scripts facilitated precise control over the simulated 237

filling cycles by automatically triggering virtual button presses based on the 238

defined scenarios. 239

– DAQ: The scripts interacted with the ultrasonic sensor through WinCC tags to 240

retrieve real-time water levels at specified intervals throughout the simulated 241

filling cycles. 242

– Data logging: When pressed, the DAQ button will activate the scripts to retrieve 243

the collected data and write it along with timestamps to a user-defined location 244

in a CSV format. This enabled easy import into data analysis tools for model 245

training and evaluation. 246

4.3. Format of Data 247

The VB scripts generated a CSV file for model training and evaluation. This file offers 248

a well-defined format for efficient processing by the SVR model. Each column of data is 249

separated by a semicolon (;) delimiter. The data format includes: 250

• Timestamps: Captures the time of each data point (e.g., YYYY-MM-DD HH:MM:SS) 251

for time-based analysis. 252

• Water Level Reading: Represents the real-time water level measurement (milliliters) - 253

the target variable for prediction. 254

• Input Features of the VB screen in WinCC: 255

– Pump: Toggle the ON and OFF state of the 4M1 Pump; 256

– Valve: Toggle the ON and OFF state of the 4M2 Valve; 257

– Start data logging: Start the VB script that logs the data on the WinCC server 258

side; 259

– Other input data is controlled by directly modifying the values in TIA Portal’s 260

HMI tag table. 261

By adhering to this structured format with semicolon delimiters, the CSV file provides 262

a well-organized dataset suitable for machine learning model training and evaluation. 263

5. Model Development 264

5.1. Lagrange Duality 265

Lagrange duality is a fundamental concept in convex optimization and plays an 266

important role in SVR algorithm [13]. An optimization often has a standard form as 267

follows: 268

minimize f0(x)

subject to

{
fi(x) ≤ 0, i = 0, ...m
hi(x) = 0, i = 0, ...p

(1)

A Lagrangian approach is to optimize equation (2) instead: 269

inf
x
P(x) = inf

x
sup
λ≥0

L(x, λ) = inf
x

sup
λ≥0

(
f (x) + ∑

k
λk fi(x)

)
(2)

where L(x, λ) = f (x) + ∑k λk fi(x), P(x) = supλ≥0 L(x, λ). 270

Equation (2) is referred to as the Primal Lagrangian equation. The second alternative 271

to the Primal function is the Dual Form equation: 272

sup
λ≥0

D(λ) = sup
λ≥0

inf
x
L(x, λ) ≤ inf

x
sup
λ≥0

L(x, λ) = inf
x
P(x) (3)

where D(λ) = infx L(x, λ). 273
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Figure 4. Regression of a linear kernel.

5.2. Support Vector Machine with Linear Kernel 274

Given a linear kernel, a regression line will have a general linear function in the form 275

of equation (4). 276

⟨w, Xi⟩+ b − yi = 0 (4)

The objective of SVR is to determine the vector w such that the resulting linear function 277

ensures most of the data points (Xi, y) remain within a specified ε tolerance. Figure 4 shows 278

the general presentation of the kernel in the case that w and Xi only have 1 dimension, but 279

in application, both of these vectors can have a much higher dimensions that cannot be 280

represented in a Cartesian coordinate. 281

The aim of SVR now becomes equation (5) 282

minimize
1
2
∥w∥2

subject to

{
yi − ⟨w, Xi⟩ − b ≤ ε

⟨w, Xi⟩+ b − yi ≤ ε

(5)

Equation (5) assumes that the convex optimization for a linear kernel function f (X) = 283

⟨w, X⟩+ b with an error of ε is feasible. Sometimes, this may not be the case and some 284

amount of errors needs to be taken into account. Hence the slack variables ξi and ξ∗i need 285

to be used [10]. 286

minimize
1
2
∥w∥2 + C

l

∑
i=1

(ξi + ξ∗i )

subject to


yi − ⟨w, Xi⟩ − b ≤ ε + ξi

⟨w, Xi⟩+ b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(6)

The parameter C determines the trade-off between the flatness of f and determines 287

how much amount of deviation from the target error ε is tolerated [10]. 288

5.3. Gaussian kernel 289

RBF kernel regression, or sometimes called Gaussian kernel regression, is a popular 290

algorithm that is widely used in SVM tasks, or in this case, SVR [14]. 291

The kernel function for 2 set of parameters is defined in equation (7) 292

K(X, Xi) = exp
(
−γ∥X − Xi∥2

)
(7)



Version November 27, 2024 submitted to Sensors 9 of 15

where γ = 1
2σ2 , σ is the standard deviation parameter of the Gaussian curve, which also 293

determines the width of the Gaussian kernel [14]. 294

The weight wi used in support vector regression is determined based on the similarity 295

between the kernel K of data i and the rest of the data points. 296

wi =
K(X, Xi)

∑N
j=1 K(X, Xj)

. (8)

Implementing the kernel into an SVM system, equation (9) is obtained 297

minimize
1
2
∥w∥2 + C

l

∑
i=1

(ξi + ξ∗i ),

subject to


yi − ∑N

j=1 αjK(Xi, Xj) ≤ ε + ξi,

∑N
j=1 αjK(Xi, Xj)− yi ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0.

(9)

5.4. Hyper-parameters explanation 298

The C parameter is a scalar that controls the penalty for the values that deviate from 299

the predicted regression curve. The higher the value C is, the more noticeable the error 300

is [11]. In contrary, a smaller value of C allows for a larger margin and more tolerance for 301

errors, which can lead to a simpler model with potentially higher bias but lower variance. 302

The γ value controls the width of the Gaussian kernel function used for the regression 303

process. This parameter defines the extent to which a single training example influences 304

the model’s decision boundary [11]. A lower γ results in a wider influence, making each 305

training example affect a larger area of feature spaces. 306

ε is the margin of tolerance around the predicted curve. If a data point is positioned 307

within this margin, the point will have 0 error penalty [11]. This margin will act as an 308

error threshold. Similar to the C parameter, a larger ε will result in a higher bias and lower 309

variance predicted curve. 310

5.5. Model explanation 311

The input layer of the network consists of six variables: 312

Variable Data type Range
Time Integer, in seconds 0 to +∞
Button 1 Boolean ON and OFF
Button 2 Boolean ON and OFF
Valve State Boolean ON and OFF
Pump State Boolean ON and OFF
Pump Analog Integer 0 to 27648

313

Upon initial observation using Microsoft Excel’s graphing tool, utilizing the RoC of 314

the water level as training data rather than the water level itself appears to be more effective 315

for the labeling process. This is due to the direct correlation observed between the valve 316

state (0 and 1), Button and Pump values, and the RoC of the water level. 317

The discrete RoC of the parameter is calculated as follows: 318

∆y
∆t

=
yi − yi−1

1 s
= yi − yi−1. (10)
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Figure 5. Value of Button1 with respect to Time in seconds.

The Time variable is relabeled manually with respect to Button1 (Fig. 5) to make 319

the learning process more effective. This is due to Button1 having the most influence over 320

the predicted data. Each time Button1 undergoes from 0 to 1 and to 0 again, the Time 321

variable is reset to 0, creating an ON and OFF cycle, which is equal to splitting 1 dataset 322

into many smaller datasets for better pattern recognition. 323

6. Model Evaluation and Chosen hyperparameters 324
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(b)
Figure 6. (a) Plot of dY and the predicted curve pred_dY using conventional hyperparameters and

(b) the Error in percentage with respect to Time in seconds.

In this experiment, the true water level measured using the ultrasonic sensor will be 325

assigned to Y , and the water level predicted by the algorithm will be stored to pred_Y . 326
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Similarly, the RoC of the water level derived from Y is stored in dY and the predicted RoC 327

of the water level (which will be used to calculate pred_Y ) is assigned to pred_dY . The 328

experiment was performed 5 times and produce no significant different (less than 0.01%) 329

for each set of hyperparameter C, ε, and γ. 330

When the predicted curve undergoes the integration process later on in the network, 331

any slight deviation between dY and pred_dY will stack up overtime. Evidently, even 332

though the error is not observed to be a problem in Fig. 6, the difference between Y and 333

pred_dY keeps increasing continuously in Fig. 7. 334
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(b)
Figure 7. (a) Plot of Y and the predicted curve pred_Y using conventional hyperparameters and (b)

the Error in percentage with respect to Time in seconds.

This makes it more effective to use a higher C and lower ε value for the training process. 335

Lowering ε will decrease the tolerance margin for the error value, and increasing the C will 336

increase the penalty of each predicted value that deviates further from the ε-margin. This 337

will force pred_dY to be much closer to the value of dY . In turn, this will also increase 338

the variance of pred_dY as discussed in Section 5.4. This should not be a problem in this 339

particular use case because the integration process will smooth-out most of the variance as 340

long as dY do not change rapidly from positive to negative values. 341

The chosen hyperparameters for the problem is: C = 320, γ = 0.72, ε = 1.3. 342
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Upon comparison between Fig. 6 and Fig. 8, it becomes clear that the adjusted C, 343

γ, and ε values have greatly decreased the bias between the dataset and the predicted 344

curve. Particularly, values from t = 2 → 5, 12 → 25, 27 → 31 s have a larger influence over 345

pred_dY . This helps largely reduce the deviation in the integration process as shown in 346

Fig. 9. 347
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Figure 8. (a) Plot of dY and the predicted curve pred_dY using adjusted hyperparameters and (b)

the Error in percentage with respect to Time in seconds.

pred_dY may have a high variation, but a large or small positive value still results 348

in an increase in dY . Similarly, a large or small value of negative pred_dY will result in 349

a decrease in dY . This characteristic can be demonstrated by taking the average error of 350

Fig. 8b and Fig. 9b. Even though the SVR model showed an average 18.38% error rate for 351

predicting RoC of the water level, but only an average 6.99% error rate for predicting the 352

actual water level after integration. 353
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Figure 9. (a) Plot of Y and the predicted curve pred_Y using adjusted hyperparameters and (b) the

Error in percentage with respect to Time in seconds.

7. Conclusion 354

In conclusion, the evaluation of the sensor output prediction model, the optimization of 355

hyperparameters, and the utilization of derivation and integration have provided increase 356

in accuracy for the sensor behavior predictions. 357

Subsequent to this experiment, it is advised to integrate more parameters into the 358

system. Specifically, the application of simulation coupling could optimize computational 359

resources and reduce inference time [15]. This addition would introduce another layer to 360

the network and alleviate the drifting error that occasionally cannot be eradicated solely by 361

predicting the derivative [16]. Furthermore, the incorporation of sensor fusion algorithms, 362

such as the Kalman filter, could significantly enhance the model’s precision by consolidating 363

data from diverse sources [17]. This strategy offers a more resilient and precise prediction 364

model for future applications. 365

Lastly, to visualize and analyze the system holistically, a digital twin representation 366

can be constructed using CAD software like Siemens’ NX for the ultrasonic sensor and 367

a three-dimensional visualization engine like Tecnomatix Plant Simulation for the entire 368

Festo MPS PA system. This approach could serve as a foundation for digitizing various 369

manufacturing processes [18]. 370
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The following abbreviations are used in this manuscript: 385

386

SVR Support Vector Regression
SVM Support Vector Machine
RBF Radial Basis Function
DT Digital Twin
RUL Remaining Useful Life
CPS Cyber-Physical Systems
RoC Rate of Change
HMI Human-Machine Interface
DAQ Data Acquisition
MSE Mean-Squared Error
PLC Programmable Logic Controller
VB Visual Basic
SCADA Supervisory Control and Data Acquisition
CAD Computer-Assisted Design
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