Learning Sensor-Based Navigation of a Real Mobile Robot in Unknown Worlds

Rui Araújo and Aníbal T. de Almeida

Abstract—In this paper we address the problem of navigating an autonomous mobile robot on an unknown indoor environment. The parti-game multiresolution learning approach [22] is applied for simultaneous and cooperative construction of a world model, and learning to navigate through an obstacle-free path from a starting position, to a known goal region. The paper introduces a new approach, based on the application of the Fuzzy ART neural architecture [7], for on-line map building from actual sensor data. This method is then integrated, as a complement, on the parti-game world model, allowing the system to make a more efficient use of collected sensor information. Then, a predictive on-line trajectory filtering method, is introduced on the learning approach. Instead of having a mechanical device moving to search the world, the idea is to have the system analyzing trajectories in a predictive mode, by taking advantage of the improved world model. The real robot will only move to try trajectories that have been predicted to be successful, allowing lower exploration costs. This results on an overall improved new method for goal-oriented navigation. It is assumed that the robot knows its own current world location - a simple dead-reckoning method is used for localization in our experiments. It is also assumed that the robot is able to perform sensor-based obstacle detection (not avoidance), and straight-line motions. Results of experiments with a real Nomad 200 mobile robot will be presented, demonstrating the effectiveness of the discussed methods.

I. INTRODUCTION

Robot programming and control architectures must be equipped to face unstructured environments, which may be partially or totally unknown at programming time. Two of the most important tasks for autonomous navigation of a mobile robot are path planning, and building a world model. In this paper, we assume that there is no predefined world model, initially available to a mobile robot, and the robot path finding problem is considered. In this problem, a robot path avoiding collisions with obstacles must be generated, so that the system moves from a starting location to a goal region in the world. A general learning approach is considered where the robot integrates the abilities to concurrently construct a world model and learn a path to the goal. A learning system brings the benefit of being based on a concept of self programming, in which control of a complex system in principle does not need extensive analysis, modeling, programming, assistance or teaching by human experts. Instead, the system acquires its competencies.

A widespread approach for mobile robot navigation is based on the occupancy grid representation of the environment [23]. Occupancy grids represent the world as a two dimensional array of evenly-spaced cells, with each cell holding a value which represents the confidence in whether it is occupied space or free space. Although grid-based models are easy to build and maintain, they impose a constant resolution structure onto the environment without any selectivity concerning the nature and clutter of the world. A very localized feature of the world may impose a very high (constant-)resolution grid over the entire state-space. This implies high data requirements, and induces excessive detail on world modeling and updating, on reasoning (high computational costs), and on the paths that result from such a model. Also, the difficulties on the direct application of grid-based models on localization have been pointed out in [28]. An alternative for overcoming the space and time complexities of grid-based methods is to use a variable resolution state-space partition (e.g. [17], [31]). Local resolution is usually only high enough to capture the important local detail of the world. This enables a lower number of cells (space) and thus lower search effort (time). Another alternative to the costs of grid-based models is to use a set of geometric primitives for representing objects in the world (e.g. [16], [28]). Geometric primitive representations, have been difficult to build, but are significantly more compact, less complex, and fully applicable to high- and low-level motion planning (e.g. Section IV) and localization approaches (e.g. [28]). With higher dimensions the geometric model data requirements become exponentially smaller than the requirements of constant-resolution cellular models. There are other approaches that do not require a map at all, but also do not provide a resulting world model. For example [4] proposes a reactive approach that is based on a fuzzy system that learns to coordinate different control strategies or behaviors, that must be predefined and programmed. In [11], a preprogrammed reactive system with a set basic behaviors, guides an associated reinforcement learning system. This can be seen as an automatic teacher that enables convergence improvement on a system which otherwise would have greater learning difficulties. Reactive systems are difficult to design and program. To overcome this problem, in [9] a methodology is proposed for behavior engineering that incorporates reinforcement and evolutionary learning. Additionally, pure reactive systems may generate inefficient trajectories since they choose the next action as a function of the current sensory readings, and the robot perception range is limited. This perception range limitation is known as the hidden state problem (e.g. [8], [20]). To address this problem, hybrid approaches combine reaction, pre-existing and/or acquired knowledge, and planning [1], [13]. In [1] it is used.
a map that is composed of world knowledge. In [13], the knowledge is integrated into the system by learning a set of both reactive and planning rules. Robot actions are chosen according to its perception, to its internal state, and to the consequences of its current and expected future behavior. This system makes extensive use of its internal state history to detect, memorize, and recognize landmarks [12]. Landmark based representations are often organized on a topological structure where the robot environment is represented by graphs [18], [19], [12]. Nodes in such graphs correspond to distinct situations, places, or landmarks. A pair of nodes is connected by an arc if there exists a direct path between them. In [10], a network of places is learned in a special environment exploration mode. The resulting graph is then used as the basis for navigation. The determination if two places are the same or not, is frequently performed by recognizing different landmarks that have distinct associated sensory features, and remains a difficult problem. In [18], distinctive places are detected as the local maxima of specific functions of the sensory readings. In [19] landmarks are characterized as features in the world that have physical extensions reliably detectable over time, and rough metric information is used for disambiguation purposes. In [24] it is used a neural network where the firing of a specific neuron is tuned to detect the landmark features sensed at a given place, and a sequence of recently detected landmarks is used for disambiguation purposes. Reactive strategies are often integrated and used in landmark based approaches to move between (e.g. [18]), and both between and within landmarks (e.g. [19]). In [30], a system is proposed that integrates a learned graph-type world model, with a reactive controller. The resolution of topological maps tends to be determined by the complexity of the environment, thus they usually have the advantage of being compact, and consequently permit fast planning. Additionally, topological approaches are usually more tolerant to errors in the exact determination of the robot location. In [27], grid-based and topological maps are integrated in order to take advantage of the orthogonal strengths of both approaches. Using the Voronoi diagram as an intermediate tool, the system extracts a topological map from a grid based model previously constructed by exploring the environment. Evolutionary learning approaches for mobile robot navigation, have also been proposed and experimented, e.g. [14]. A difficulty with these approaches is that learning a solution is considerably time-consuming.

To gain advantages from different approaches, this paper integrates ideas from multiresolution partition methods, and geometric primitive based and graph based methods. Specifically we demonstrate the application, of the parti-game learning approach [22] for learning to navigate a mobile robot from an initial position, to an initially known goal region on an unknown world. It is a multiresolution approach that incorporates ideas from both graph-based, and partition-based methods. The algorithm does not have any initial internal representation, map, or model, of the world. In particular the system has no initial information regarding the location, shape, and size of obstacles. The robot can simultaneously, construct a model of its environment, and learn to navigate to the goal, having the predefined abilities of straight-line motion, and obstacle detection (not avoidance) using its own distance sensors. These two learning abilities cooperate and enhance each other in order to improve the overall system performance. The robot is able to navigate to the goal, from the very first trial, and continues to improve navigation, converging to a good final solution, in a small number of subsequent trials. Straight-line motion is used as a local greedy controller that can be asked by the learning system to move the robot to a neighboring cell. In spite of being clearly valuable, the parti-game world model does not integrate most of the received sensor information, that is consequently lost and not used to plan robot trajectories. Additionally, some forgetting of accumulated world knowledge takes place when cell-splitting occurs on the system (Section II-C).

This paper also introduces and demonstrates the effectiveness, of a new approach for sensor-based on-line map building, that is based on the application of the Fuzzy ART neural architecture [7], [6]. This approach builds a map of rectangular geometric primitives, which is then integrated as a complement in the original parti-game learning approach, resulting on an improved new method, allowing the system to make a more efficient use of collected sensory information for simultaneous and cooperative construction of a world model and learning to navigate to the goal. In this context, a predictive on-line trajectory filtering method is introduced on the learning approach, allowing a very significant reduction on the time-consuming exploration effort associated with searching the world with a real robot. Instead of having a mechanical device searching the world, the idea is to have the system analyzing the feasibility of trajectories in a predictive mode, by taking advantage of the improved world model. The real robot will only move to try a trajectory that, for the current model, has been predicted to be successful.

The system requires the knowledge of the robot current position. However, in this paper we do not deeply address the problem of mobile robot localization. We simply use accumulation of encoder information to perform robot localization. Even though this simple approach induces errors, it was sufficient to experimentally validate the effectiveness of the described methods. The organization of the paper is as follows. Section II presents the basic learning architecture. Section III presents a new method for sensor-based map building, that in Section IV is integrated on the parti-game algorithm, yielding an improved approach to navigate a mobile robot. Section V presents the experimental environment. Section VI presents experimental navigation results obtained with a real Nomad 200 mobile robot. Section VII presents a discussion, and in Section VIII we make some concluding remarks.

II. LEARNING ARCHITECTURE

The problem we wish to solve in this work may be stated as follows: A mobile robot is initially on some position on
the environment, or world, and then it must learn a path to a predefined goal region in the world. The system does not have any initial internal representation, map, or model, of the world. It is assumed that the robot knows its own current world location. It is additionally assumed that the robot is able to perform sensor-based obstacle detection (not avoidance), and straight-line motions between its current position and some other specified position in the world. A straight-line motion may fail when a stopping mechanism is triggered due to the detection of an obstructing obstacle.

The robot control architecture used in this work, is based on the application of the parti-game learning approach [22] to the specific case of learning a mobile robot path. The original formulation of the algorithm was reorganized in order to improve computational performance without changing the overall effect. The parti-game algorithm applies to learning control problems specified by a predefined goal region, and in which: (1) We have continuous and multidimensional state and action spaces; (2) “Greedy” and hill-climbing techniques can become stuck, never reaching the goal; (3) Random exploration can be intractably time-consuming; (4) We have unknown, and possibly discontinuous, but deterministic, system dynamics and control laws. However, part of the control solution is assumed to be initially available in the form of a local greedy controller, which we can ask to move the system greedily towards a desired state. However, there is no guarantee that a request to the greedy controller will succeed. In our case, the greedy controller is the “straight-line mover”; (5) There is a known bounded region of the state-space that completely includes the system environment. As a result of the algorithm operation, a feasible solution is found, not necessarily an optimal path according to a particular criterion.

A. First Concepts

The parti-game algorithm is based on a selective and iterative partitioning of the state-space. It is a multiresolution approach, beginning with a large partition, and then increasing resolution by subdividing the state-space (e.g. Figs 1, 2, 8–10) where the learner predicts that a higher resolution is needed. In order to reach the goal, the mobile robot path is planned to traverse a sequence of cells. The ability of straight-line motion is used as a greedy controller to move from one cell to the next cell on the path. This request to move to the next cell (a neighboring cell) may fail – usually due to an unexpected obstacle that is detected to be obstructing the robot path. A database of cell-outcomes, observed when the system aims at a new cell, is memorized and maintained in real-time. The database is in turn used to plan the sequence of cells to reach the goal cell, using a game-like minimax shortest path approach (Section II-B). Cells are split when the robot is caught on a losing cell - a cell for which the distance to the goal cell is \(\infty \). Intuitively this means that, for the current resolution, the game of arriving at the goal cell is lost. In these situations, as explained in Section II-C, the partition resolution is selectively increased by splitting cells in the neighborhood between losing and non-losing cells.

As usual a partitioning of the state-space, which will be denoted by \(P \), is a finite set of disjoint regions, the union of which covers the entire state-space. These regions will be called cells, and will be labelled with integers \(1, 2, \ldots, N \). There is a special cell representing the goal region. This special cell is never split, and is labelled with number \(\text{GOAL} = 0 \). In this paper we will assume that cells are all axis aligned hyperrectangles. Although this assumption is not strictly necessary, it simplifies the computational implementation of the algorithm. A real-valued state, \(s \), is a vector of real numbers in a multidimensional space. In our case we define a two dimensional state-space, where the state vector, \(s = [X \ Y]^T \), is composed by the two position coordinates of the mobile robot \((X \ Y) \). Real-valued states and cells are distinct entities. For example the right partitioning on Fig. 1 is composed of six cells, which may labelled with numbers \(1, \ldots, 6 \). Each real-valued state is in one cell and each cell contains a continuous set of real-valued states. \(\text{NEIGHS}(i) \) is defined as the set of neighbors, or cells which are adjacent to \(i \). Two cells are adjacent if the intersection of their borders has more than one point.

The partition resolution is incrementally and selectively increased, by splitting in half the cells verifying a specific criterion (Section II-C). By means of this subdivision process, the state-space partitioning, \(P \), acquires an organization that, in our implementation is handled by a \(\text{kd-tree} \) data structure [3], [15] – e.g. Fig. 1. Although other organizations, like the quad-tree structure (e.g. [17], [31]), would be possible, the \(\text{kd-tree} \) structure simplifies the computational implementation of the algorithm. The \(\text{kd-tree} \) was originally proposed to solve the nearest neighbor problem in an efficient manner. In this work, besides being an elegant representation of the state-space partitioning, it is used as a fast state-to-cell mapping mechanism that, as will become clear in the rest of this section, is required for the implementation of the algorithm.

The algorithm incorporates the use of an environmental model, which can be any model (for example, dynamic or geometric) that we can use to tell for any real-valued state, control action, and time interval, what will be the subsequent real-valued state. In our case the “model” is implemented by the mobile robot (which can be real or simulated), and takes the current position, and position...
command, to generate the next robot position.

A path to the GOAL is planned (Section II-B) as a sequence of cells, with the local controller being used to advance from one cell to the next. The system is said to be aiming a given cell \(j \), when the local greedy controller is actuated to keep moving towards the center of cell \(j \). When the system is at a cell \(i \), by definition the application of an action \(j \) consists on aiming the neighboring cell \(j \). To each cell \(i \), it corresponds a set of possible actions which is precisely defined as \(\text{NEIGHS}(i) \). Suppose the system starts at a given real-valued state, \(s \), and then aims a neighboring cell \(j \). Then the \(\text{NEXT-CELL}(s, j) \) function tells us which cell the system enters when it exits the original cell, or in which cells the system is when an obstacle is detected, whichever situation occurs first. When an obstacle is detected, a stopping mechanism is triggered and, by definition, in this situation the robot is said to become stuck. In our work, the test for sticking performs an obstacle detection with the distance sensors of the mobile robot. Let \(i \) be the cell containing the real-valued state \(s \). Then,

\[
\text{NEXT-CELL}(s, j) = \begin{cases}
 i, & \text{if we became stuck in } i \\
 \text{the cell containing the exit state otherwise.}
\end{cases}
\]

In general, we may have \(\text{NEXT-CELL}(s, j) \neq j \), because there is no guarantee that a request to the local greedy controller will succeed. The particular outcome of an action \(j \) depends on the real-valued state \(s \), from which the system starts aiming at neighboring cell \(j \). Thus each action \(j \) in cell \(i \) has a set of possible outcomes, that is defined as the set of all possible next cells that may be attained, when all states \(s \) in cell \(i \) are considered as possible starting points.

However, since the system has no information regarding the location, shape, and size of the objects present in the world, it is impossible to compute the set of all possible outcomes of an action in order to have them available for the practical operation of the method. Even if such information was available, the computation could be difficult. But on a learning algorithm, it is natural and more important to learn an outcomes set, only from real experience on the behavior of the system. Thus, a database of cell-outcomes empirically observed when the system aims at new cells, is memorized and used instead of all possible outcomes. The set of outcomes, of an action \(j \) in cell \(i \), \(\text{OUTCOMES}(i, j) \), is defined as the set of next-cell outcomes that were previously observed during the operation of the system:

\[
\text{OUTCOMES}(i, j) = \begin{cases}
 k, & \text{exists a real-valued state } s \text{ in cell } i, \text{ for which } \\
 \text{NEXT-CELL}(s, j) = k \text{ has been observed } \\
 \text{as a result of a previous application of action } j
\end{cases}
\]

As will be seen in Section II-C each \(\text{OUTCOMES}(i, j) \) set, in spite of its accumulative nature, is sometimes subject to some forgetting of experience. Before an action is experienced, the corresponding \(\text{OUTCOMES}(i, j) \) set is not left empty. In these situations it is used the default optimistic assumption that we can reach the neighbor that is aimed. Associated to each \(\text{OUTCOMES}(i, j) \) set is an \(\text{OPTIMISTIC}(i, j) \) boolean variable indicating if the optimistic assumption is currently being used in \(\text{OUTCOMES}(i, j) \). A database, \(D \), of previously accumulated experience is formed by the composite contribution of all \(\text{OUTCOMES}(i, j) \) sets and \(\text{OPTIMISTIC}(i, j) \) variables. The combination of database \(D \), and partition \(P \) constitutes one internal world model that is constructed and used by the system. It will be called the parti-game (world) model when there is risk of confusion with an augmented world model to be introduced in Sections III, IV.

It is now seen that cells, besides being organized as a state-space partitioning as illustrated in Fig. 1, have additional structuring relations. Each cell has a set of neighbor cells, from which it can be aimed. Also, there is a set of possible cell-outcomes for an aim operation. For reflecting those additional structuring concepts, cells are also organized on a graph data structure as illustrated in Fig. 2.

B. Planning with Minimax, and Experience Accumulation

Define the cell-length of a, possibly not continuous, path on the state space, as the number of cell transitions that take place as we go through the path. When the system is on the real-valued state \(s \) of a cell \(i \), one of the key decisions that the algorithm has to take, is to choose the next cell at which the system should aim using the local greedy controller. The sequence of cells traversed to reach the goal cell, is planned using a game-like minimax shortest path approach. All next-cell outcomes, so far observed as a result of a certain cell-aim operation, may be viewed as “response-moves” available to an imaginary adversary that would be working against our objective of reaching the next cell, and ultimately reach the goal. The next cell on the path is chosen taking into account a worst case assumption, i.e. we imagine that for each cell we may aim, the adversary is able to place us on a selected position in the current cell, such that the result of the aim will be the worst next-cell.
In this way we always aim at the neighboring cell with the best worst-outcome. This minimax approach can lead to planning a cyclic sequence of cells not arriving at the GOAL – more on this possibility shortly below. In this framework, we can define the minimax shortest path from cell i to the goal, $J_{WC}(i)$, as the minimum number of cell transitions to reach the goal in the worst case, i.e., assuming that, whenever we are in a certain cell i and the intended next cell is j, an adversary places us in the so far experienced worst position within cell i prior to the local controller being activated. The $J_{WC}(i)$ shortest-path is defined as:

$$J_{WC}(i) = \begin{cases} 0, & \text{if } i = \text{GOAL (i.e.: 0)} \, , \, \text{else} \\ 1 + \min_{j \in \text{NEIGHS}(i)} \max_{k \in \text{OUTCOMES}(i,j)} J_{WC}(k) & \end{cases}$$

(1)

The $J_{WC}(i)$ values are obtained by Dynamic Programming methods [5]. Specifically, suppose that there are $N+1$ cells, labelled $0, 1, \ldots, N$. We start by defining the intermediate variables $J_{WC}(i)$, $p = 0, 1, \ldots, N$, that for $p = N$ are initialized as follows:

$$J_{WC}^{(N)}(i) := \begin{cases} 0, & \text{if } i = \text{GOAL (i.e.: 0)} \\ \infty, & \text{otherwise} \end{cases}$$

(2)

Then, the following N-step ($p = N - 1, N - 2, \ldots, 0$) multi-variable ($i = 1, 2, \ldots, N$) iterative assignment is executed:

$$J_{WC}^{(p)}(i) := \begin{cases} \min_{j \in \text{NEIGHS}(i)} \max_{k \in \text{OUTCOMES}(i,j)} J_{WC}^{(p+1)}(k), \quad \text{for } i = 1, 2, \ldots, N; \, p = N - 1, N - 2, \ldots, 1, 0. \end{cases}$$

(3)

This iterative equation (3), closely resembles equation (1). As is clearly seen, if after some step p the $J_{WC}^{(p)}(i)$ values have stabilized, i.e. if $J_{WC}^{(p)}(i) = J_{WC}^{(p+1)}(i)$ for $i = 1, 2, \ldots, N$, then the iterative process of equation (3) can be immediately exited, allowing a decrease on the computational costs without affecting the final result. We could further decrease the expected number of backups required to make equation (3) converge, by properly controlling and/or modifying the order by which backups are executed - e.g. [21], [2]. Notably, in [21] priority is given to update $J_{WC}(i)$ values that depend on most recently changed $J_{WC}(k)$ values. After the iterative process has converged, the solution is given by $J_{WC}(i) = J_{WC}^{(0)}(i)$ for $i = 1, 2, \ldots, N$. Once the solution is reached, it is important to retain, for each cell i, the value of j, that minimizes equation (1). It will be used by the algorithm (c.f. step 5.1 of Algorithm 1 – Fig. 3). As suggested in [22] another idea can be applied to reduce the computational costs required for each control decision: the updates of the $J_{WC}(i)$ values can take place incrementally in a series of time intervals interleaved with real time control decisions (note that this implies a change on the overall operation of the method of this section). Techniques like this are described in [26], [21], [2].

Employing the minimax algorithm [29], i.e. searching the tree of all paths leading to the goal, is an alternate approach, that could have been used to solve the minimax shortest path problem.

The value of $J_{WC}(i)$ can be $+\infty$ if, when we are at cell i, our adversary can permanently prevent us from reaching the goal. Since there is always a finite number of cells, this planning situation, identified by $J_{WC}(i) = +\infty$, can only correspond to the development of a cyclic sequence of cells passing through cell i, but not through the GOAL cell. By definition, such a cell i is called a losing cell. However, as will become clear, the method is able to handle this possibility, and furthermore, this is one of the facts upon which the method relies, and from which it takes advantage, for its overall operation.

When we are at a cell i, then with the minimax-shortest-path method, the next cell to aim is the neighbor, j, with the lowest $J_{WC}(j)$. According to the current database of experience D, we expect that if $J_{WC}(i) = n < \infty$, then when starting from cell i, we will get n or fewer transitions to get to the goal. Note now that the inclusion of all possible outcomes in the definition of $\text{OUTCOMES}(i,j)$ (Section II-A) would have been too pessimistic because some outcomes will never occur. Those correspond to outcomes that are associated to regions of cell i that will never be actually visited but, nevertheless, would be available for the adversary to place us. But those may be precisely the regions that are associated to the worst possible outcome(s), thus facilitating an eventual failure of the process. So although this method, of considering all possible cell-aim outcomes, would guarantee success if a solution is found, it could often fail on solvable problems.

Fig. 3 presents Algorithm 1 which keeps applying the local greedy controller, aiming at the next cell on the “minimax shortest path” to the goal, until either we are caught on a losing cell (step 4, $J_{WC} = +\infty$), or reach the goal cell (step 3). An action (aim) terminates, when the sys-
ALGORITHM 2
1. IF we want to force an initialization of \(P \), and \(D \) THEN
2. \(\text{Initialize partition } P \), with 2 cells: the special cell \(\text{GOAL} = 0 \), and the normal cell \(\text{"1"} \) containing the entire state-space.
3. \(\text{Initialize database } D \) to include OUTCOMES(1,0) = \{0\}, and OPTIMISTIC(1,0) = TRUE.
4. WHILE (\(s \) is not in the goal cell) THEN
5. \(\text{Let MODEL-CHANGED} = \text{TRUE} \).
6. Run Algorithm 1 on \(s \), \(D \), and \(P \). Algorithm 1 returns the updated database \(D \), the new real-valued state \(s \), and the success/failure signal.
7. IF FAILURE was signalled THEN
8. \(\text{Let } Q := \text{All losing cells in } P \) (\(Q \infty \infty \)).
9. \(\text{Let } Q' := \text{The members of } Q \) who have any non-losing neighbors.
10. \(\text{Let } Q'' := Q' \) and all non-losing neighbors of members of \(Q' \).
11. \(\text{Split each cell of } Q'' \) in half along its longest axis producing a new set of cells, \(R \), of twice the cardinality.
12. \(P := P + R - Q'' \).
13. \(\text{Recompute all new neighbor relations, and delete from all the OUTCOMES}(i,j) \) sets of database \(D \), all those instances of real ("non-optimistic") experience that correspond to a member of \(Q'' \) as a start point, an aim-for, or an actual outcome; and for all those OUTCOMES(i,j) sets that result empty, let OUTCOMES(i,j) := \{\} and OPTIMISTIC(i,j) := \text{TRUE}.
14. \(\text{Create and initialize all the new sets OUTCOMES}(i,j) := \{\}, \) and variables OPTIMISTIC(i,j) := \text{TRUE}, that are required due to the new cells created in step 4.4.
15. \(\text{Loop} \).

Fig. 4. Top level Algorithm 2: selective cell-splitting while Algorithm 1 (Fig. 3) fails to arrive at the goal.

System either attains the desired neighboring cell or detects an obstacle (step 5.2). If a new outcome for an action is experienced, then the system updates the corresponding OUTCOMES(i,j) (steps 5.5, 5.6). If for this reason the OUTCOMES(i,j) is changed, then equations (1) are again solved (step 1), to obtain the, possibly new, “minimax shortest path” to the goal. Step 5.1 retrieves, from the solution that was computed in step 1.1, the next neighboring cell on the “minimax shortest path”. Algorithm 1 has three inputs: (1) A partitioning of the state-space, \(P \); the current (on entry) (2) database of accumulated experience \(D \), and (3) real-valued state \(s \). At the end Algorithm 1 returns three outputs: (1) The updated database \(D \), (2) the final, real-valued state \(s \), and (3) a boolean variable indicating SUCCESS or FAILURE.

C. Selective Partition Subdivision

Algorithm 1 gives up when it discovers it is in a losing cell. One of the hypothesis of the approach is that all paths through the state space are continuous. Assuming that a path to the goal actually exists through the state-space, i.e. the problem is solvable, then there must be an escaping-hole allowing the transition to a non-losing cell and eventually opening the way to reach the goal. This hole has been missed by Algorithm 1 by the lack of resolution of the partition. A hole for making the required transition to a non-losing cell, can certainly be found on the cells at the borders between losing and non-losing cells. Taking those comments into account, whenever the system is caught on a losing cell, the top level Algorithm 2 (Fig. 4) divides in two the cells in the borders (steps 4.1-4.5) in order to increase the partition resolution, and to allow the search for the escaping-hole. This partition subdivision takes place between the successive calls to Algorithm 1 that keep taking place while the system does not reach the goal region. Whenever cell-splitting takes place, the system must remove from the database, \(D \), all those instances of real ("non-optimistic") experience that make reference, as a start point, an aim-for, or an actual outcome, to cells that have just been split (step 4.6). This is a forgetting of experience that is necessary. In fact, when a set of cells is split, the associated aim-outcome information is not directly inheritable from “parent-cells” to “son-cells”. This constitutes one of the basic ideas of the parti-game operation: e.g. in spite of an aim-failure when moving between two “parent-cells”, it is quite possible to have aim-success (and the method is searching for it) between two corresponding “son-cells”. Each cell splitting operation involves the initialization (step 4.7) of new OUTCOMES(i,j) := \{\} and OPTIMISTIC(i,j) := \text{TRUE} sets (using the optimistic assumption) for all new cells and/or new actions. Similarly to Algorithm 1 discussed above, Algorithm 2 works on the same input data objects (\(P \), \(D \), and \(s \)), which are updated, and then returned as outputs. \(P \) and \(D \) are initialized at the beginning (Step 1) of Algorithm 2, except when we want to use an initial relevant world model that may be already available from a previous run of Algorithm 2.

In [22], on every iteration of Algorithm 1, all OUTCOMES(i,j) sets are completely recomputed from a set of triplets representing the cell-outcome experience, and the minimap problem is solved. Algorithms 1 and 2 (Figs. 3, 4) were reorganized to improve computational performance: on every iteration only the minimal required updates are incrementally made on the OUTCOMES(i,j) sets, and the minimap problem is only solved if an OUTCOMES(i,j) set changes. The approach has no direct way to tell if the goal is inaccessible – Algorithm 2 can be complemented with a mechanism to avoid that the system keeps dividing cells forever by placing an upper limit on the number of cells, and/or a lower limit on the size (possibly with an upper limit on the number) of the smallest cells.

III. Map Building

Experimental work has demonstrated the application of the algorithm of Section II to navigate a real mobile robot (Section VI). The parti-game world model is based on its multisresolution partition \(P \), and on its aims-outcomes database \(D \) that summarizes the information collected while exploring the world. However, the system gets rid of most of the sensor information received from the environment and, in spite of its clear usefulness, the information maintained on database \(D \) (Section II-A) is somewhat indirect, scarce, and implicit, in its description of the world. This fact has motivated the application of the Fuzzy ART neural architecture [7], [6], as a new approach for map building based on geometric primitives. In general a map building algorithm should ideally have a set of characteristics [16]. Next we will discuss them in the context of the Fuzzy ART world model: (1) The Fuzzy ART model allows self-organization: to be autonomous, the mobile robot must organize in a useful way, the sensor
data it collects from the environment. (2) Multifunctionality: for representing the environment, we want a compact model that allows for efficient sensor-based map-building, motion planning, self-referencing, etc. The application of the Fuzzy ART model for map-building is discussed in Sections III-A and VI, and an example of its usefulness and application in motion planning is shown in Sections IV and VI. The Fuzzy ART model performs a clustering operation that has potential application on other pattern recognition, control, and reasoning problems involved in the operation of a mobile robot. (3) Updatability: the model should be easy to update according to new information arriving from sensors; the Fuzzy ART model can be updated by learning each isolated data point as it is received on-line, with the same result as if the update were made in conjunction with a set of other data points - model update is made on a point by point basis not requiring the simultaneous consideration of a, possibly large, set of data points. This is a significant convenience, allowing the robot to use new sensor data as soon as it arrives, thus enabling other system components, such as path planning and localization, to take advantage of an updated model as soon as possible. See Section VII for a further discussion on the updatability of the Fuzzy ART model. The Fuzzy ART model enables (4) a compact geometric representation allowing small data requirements, and (5) low computational complexity. (6) Unlimited dimensions: the Fuzzy ART model is easy to extend to the modeling of data that is represented in higher dimensions (e.g., mapping of R^3 objects) without adversely impacting on the data size or complexity.

A. Map Building with Fuzzy ART

Other works, e.g. [16], [28], have used different methods to extract geometric primitives. In this subsection, we give a brief overview of the Fuzzy ART learning architecture [7], [6], and discuss its application to map building. With the approach we are able to extract a set of (hyper-) rectangles, whose union represents occupied space, where sensor data points associated with objects have been perceived - a kind of unsupervised clustering.

A Fuzzy ART system includes a field F_0, of nodes representing a current input vector; a field, F_1, that receives both bottom-up input from F_0, and top-down input from a field, F_2, that represents the active code, or category (Fig. 5(a)). The F_0 activity vector receives the current sensor data point, and is denoted by $I = (I_1, \ldots, I_M)$. Each component is assumed to satisfy the condition $I_i \in [0,1]$, $i = 1, \ldots, M$. However, if we have sensor data that is assumed to belong to one (any) axis-aligned hyperrectangle, then the application of a linear transformation, L, enables the satisfaction of this condition. The F_1 and F_2 activity vectors are respectively denoted by $y_1 = (y_{11}, \ldots, y_{1M})$ and $y_2 = (y_{21}, \ldots, y_{2N})$. The number of nodes in each field is arbitrary. Associated with each F_2 category node j ($j = 1, \ldots, N$) is a vector $w_j = (w_{j1}, \ldots, w_{jM})$ of adaptive weights. Initially weights are set to $w_{j1}(0) = \cdots = w_{jM}(0) = 1$, and all categories are said to be uncommitted. After a category is selected for coding it becomes committed. The Fuzzy ART operation is controlled by a choice parameter $\alpha > 0$, a learning rate parameter $\beta \in [0,1]$, and a vigilance parameter $\rho \in [0,1]$. For each presentation of input I, and F_2 node j, a choice function is defined by $T_j(I) = |I \land w_j|/(\alpha + |w_j|)$, where, for any M-dimensional vectors p and q, `\land' denotes the 'min' version of the fuzzy AND operator defined by $(p \land q)_j = \min(p_j, q_j)$, and `$\cdot$' denotes the norm defined by $|p| = \sum_{j=1}^{M} |p_j|$. For notational simplicity, $T_j(I)$ is often written as T_j when input category I is fixed.

The system is said to make a category choice when at most one F_2 node can become active at a given time. The category choice is indexed by J, where $T_J = \max(T_J : j = 1, \ldots, N)$. If more than one T_J is maximal, the category j with the smallest index is chosen. In particular, nodes become committed in order $j = 1, 2, 3, \ldots$. When the Jth F_2 category is chosen, $y_{2j} = 1$, $y_{2j'} = 0$ for $j \neq J$, and the F_1 activity vector is given by $y_1 = I \land w_j$. Resonance occurs if the match function, $|I \land w_j|/|I|$, of the chosen category meets the following vigilance criterion: $|y_1| = |I \land w_j|/|I| \geq \rho |I|$. If so, then learning takes place as defined below. Mismatch reset occurs if $|y_1| = |I \land w_j|/|I| < \rho |I|$. In this situation, the match function T_j is set to 0 for the duration of the current input presentation to avoid the persistent selection of the same category during search. A new index J maximizing the choice function is chosen, and this search process continues until the chosen J leads to resonance. Once search ends, learning takes place by updating weight vector w_j according to the following equation: $w_j^{(new)} = (\beta (I \land w_j^{(old)}) + (1 - \beta)w_j^{(old)})$. By definition fast learning corresponds to setting $\beta = 1$. To avoid proliferation of F_2 categories, a complement coding input normalization rule is used. With complement coding, if the input is an M-dimensional vector x (in our case, a sensor data point), then field F_0 receives the $2M$-dimensional vector $I = (x, x^c) = (a_1, \ldots, a_M, a_1^c, \ldots, a_M^c)$, where the complement of x is denoted by x^c, with $a_i = 1 - a_i$. The weight vector w_j, can also be written in complement coding form: $w_j = (w_j, -w_j^c)$, where u_j and v_j are M-dimensional vectors. Let an (hyper-) rectangle R_j be defined by two of its corners (in diagonal) as illustrated in Fig. 5(b). The size of R_j is defined as $|R_j| = |v_j - u_j|$, which in the $2D$
case, is equal to the sum of the height and width. A Fuzzy ART system with complement coding, fast learning, and constant vigilance forms hyperrectangular categories, \(R_j \), that grow monotonically in all dimensions, and converge to limits in response to an arbitrary sequence of input vectors \([7],[6]\). Rectangle, \(R_j \), includes/represents the set of all data points which have activated Fuzzy ART category \(j \) without reset \([7],[6]\). Additionally \([7],[6]\), the maximum size of the rectangles \(R_j \) can be controlled with the vigilance parameter: \(|R_j| \leq (1 - \rho)M \). In our case, rectangle size limitation is important in order to avoid the free-space between two obstacles to be modeled by a single encompassing rectangle primitive. In this case, instead of growing a single rectangle, we want the size limitation mechanism to give rise to two separate primitives with free-space in between. After applying to the rectangles \(R_j \) the inverse, \(L^{-1} \), of the linear transformation \(L \) we get a new set of rectangles \(R_j^M \) that include/represent all the original sensor data points. Those new rectangles form what we define as the Fuzzy ART (world) model. The composite contribution of the parti-game and Fuzzy ART models forms an improved (overall) world model.

B. Sensor Data Filtering

Due to the accumulating nature of the Fuzzy ART system, when applying it to modeling real sensor data, it is useful to perform some prior filtering for removing noisy exemplars. In our implementation, we have used two filtering operations on sensor data points. First experience with the infrared range sensors we have used, shows that above a certain limit, distance readings were not very reliable, and thus were rejected. A second filtering operation, probably more generally applicable to other types of sensors, was performed. Let \(S \) be a set of sensor points. A point \(s \) is rejected, if no other data point of \(S \) is found inside a circle of radius \(r_j \) and center at \(s \). Since this second operation requires the presence of a set of points \(S \), we are not able to take full advantage of the isolated-point learning capability of Fuzzy ART. However, excellent results were obtained with small data sets, \(S \), composed of points coming from a number of as low as two consecutive sensor-ring scans.

IV. Predictive On-line Trajectory Filtering

In Section VI we will present experimental work demonstrating the application of the method of Section II, to navigate a mobile robot. This work enabled the identification and understanding of some aspects where this method could be improved. Two comments have emerged in this context. First, as discussed in Section III, the parti-game model is somewhat indirect, and scarce in its description of the world. Second, as discussed in Section II-C, the parti-game model (specifically, its database \(D \)) must be subject to some forgetting when cell-splitting takes place. But from an external point of view, these two aspects induce redundant exploration.

These two comments have motivated two corresponding developments on the navigation architecture. First, a new map building method, based on Fuzzy ART, and making better use of the received sensor information, was developed (Section III), and integrated in the parti-game system of Section II, for improving its world model. Second, the parti-game learning approach was extended by the introduction of a method for Predictive On-line Trajectory Filtering (POTF), allowing a very significant reduction on the time-consuming exploration effort that is associated with searching the world with a real robot. Instead of having a mechanical robot exploring the world, the idea is to have the system analyzing trajectories in a predictive mode, by taking advantage of the improved world model. The real robot will only move to explore a planned trajectory, when the system is on real mode, and the system will enter this mode, only after a predictive success has occurred. In real mode, obstacle detection is performed using the real distance sensors of the robot. In predictive mode, on the other hand, exploration trajectories have an on-line predictive/simulation nature not involving any real-robot motion. The robot is approximated by a point and obstacle detection is performed using the Fuzzy ART world model, possibly enlarging the rectangles by a percentage of the robot radius in order to (1) form a safety border gap, and (2) better estimate the constraints that apply to the robot trajectories. In both modes, path planning is performed using the parti-game approach, with the parti-game model (partition, and aim-outcomes database \(D \)) being incrementally updated, according to the results of both predictive and real exploration. However, only in real mode is the Fuzzy ART model incrementally updated, because only in this mode is real sensor data available for this purpose.

As already described, one of the main ideas of the method, is to reduce real-robot exploration by giving priority to predictive exploration. However, the “extent” of the predictive effort may be controlled by configuring the exigency level of the “predictive success” condition that is used to trigger the transition from predictive mode to real mode. Two options may used to establish this condition: a predictive success may be said to occur when, (1) \(N \) consecutive predictive cell-aim successes (or the predictive arrival at the goal cell whichever comes first), or (2) a predictive arrival at the goal cell, takes place after starting from the current robot location. Also, the “frequency” of predictive effort may be controlled, by configuring the condition that
is used to trigger the transition from real mode to predictive mode. The system always starts in predictive mode, and the following four options (listed in increasing order of predictive frequency) may be used: enter predictive mode (1) after cell splitting that takes place when the robot is caught on a losing cell, or (2) at the end of every failed cell-aim, or (3) at the end of every cell-aim, or (4) at the end of every motion sampling interval. Fig. 6 illustrates the ideas introduced in this section.

V. EXPERIMENTAL ENVIRONMENT

The methods described in this paper were implemented and demonstrated on a real Nomad 200 mobile robot [25] (Fig. 7). The Nomad 200 has three wheels controlled by two motors. One motor controls the synchronous translation of the three wheels. The other motor enables the three wheels to rotate together. The robot has a turret which, under the control of a third motor, can rotate independently from the base. The robot has a zero turning-radius, i.e., it can rotate around its center. Both the steering and drive motors have encoders which enable the measurement and control of both the Cartesian location of the robot, and the steering and turret angles. However the accuracy of such measurements may be conditioned by such factors as small differences between the diameters of the wheels, and slippage between the robot’s wheels and the floor.

The robot has 16 sonar range sensors, and 16 infrared range sensors. Both types of sensors are equally spaced around the turret. The sonar system uses standard Polaroid transducers, that are based on the usual technique of measuring the time-of-flight of an acoustic wave, from emission to reception after being reflected by a detected object. Each sonar sensor is able to measure distances from 15.2 cm, to 10.6 m. Each infrared range sensor is composed of one photodiode receiver, placed between two emitters, with all the three elements horizontally disposed. The infrared sensors are used to measure distances to objects less 60 cm away. The robot has also a planar laser range finder.

The results reported in this article were obtained using a 100 MHz Pentium processor running the “Nomadic Software Environment” [25]. This software environment allows the control of a real or simulated robot. With the exception of Section VI-D, the work here presented used the real Nomad 200 facing real obstacles. The infrared sensors were used for implementing the obstacle detection primitive, and to measure distances to objects.

VI. EXPERIMENTAL RESULTS

In this section we present results of six experiments, regarding the application of the methods described in Sections II, III, and IV, to the navigation of a Nomad 200 mobile robot. In all the experiments the objective is to find a path to a predefined goal region. In experiments 1 to 4 the real robot was used, and the dimensions of the state-space were 7.42 m x 6.73 m. Each experiment was organized as a sequence of trials to navigate from the starting position to the goal. The first trial starts with an empty world model. Subsequent trials start with, and build upon, the world model that was learned until the end of the previous trial. The learning approach requires that the mobile robot knows its own current location in the world. However, in this paper we do not deeply address the problem of mobile robot localization. We simply used accumulation of encoder information to perform robot localization, with localization accumulators being set to correct values at the beginning of each trial. Even though this simple approach induces errors, it was sufficient to experimentally validate the effectiveness of the learning approach. The results of experiments 1 to 4 are shown in Figs. 8-11, which for each trial, present the robot trajectory and the state-space partitioning at the end of the trial. The infrared information is also shown in all figures except in Figs. 10(c), and 10(e).

A. The Basic Approach

Experiment 1 (Fig. 8) demonstrates the performance of the parti-game approach of Section II. The trajectory of the mobile robot on the first trial (Fig. 8(a)) shows that the robot is already able to reach the goal. Since the robot has no initial knowledge about the world, it performs a considerable amount of exploration on this trial. In spite of this, the constructed world model is not robust enough to enable a subsequent easy navigation to the goal. In fact, on the second trial (Fig. 8(b)), the system still needs to increase the resolution of the state-space partition, in areas where the robot faces greater difficulties to navigate. The extensive exploration effort in this trial reflects the need to incrementally accumulate information about cell-aim outcomes regarding the newly created cells. On areas where navigation is easy, and on areas that the robot does not need to visit, the partition resolution is kept low. This enables a lower number of cells if comparing with constant-resolution cell-based approaches. On trial 3 we observe a much more direct navigation to the goal (Fig. 8(c)). However, in this trial some transitions between cells created on trial 2 are still attempted and the resulting outcome information is accumulated. On Fig. 8(d) it can be seen that, on trial 4, the mobile robot has already learned to promptly
navigate to the goal, and only minor exploration steps are taken by the robot.

B. A Changing World

The response of the method of Section II to a changing environment, will now be discussed in conjunction with Fig. 9. This figure presents the results of Experiment 2, that will be referenced as an example. Note on trial 1 (Fig. 9(a)) that, after an initial exploration effort, the system was able to backtrack and escape the upper dead-end. At the beginning of Trial 4 the interior obstacles were removed (Fig. 9(b)), and at the beginning of Trial 5 new obstacles were inserted at a distinct location (Fig. 9(c)). A changing robot world can be seen as a union of one or more changes, each belonging to one, out of two possible classes. On class 1, a new obstacle is created on a previous free-space location. Changes of class 2 correspond to the opposite, i.e. an obstacle is removed creating a free area on the state-space. One important fact about the overall operation of the parti-game approach is that it performs exploration, mainly in response to failures to advance to the goal. The method is clearly able to overcome a change of class 1. In fact, suppose that an obstacle is created on a location that is currently being used by the robot path to the goal. In response, the method just continues with an incremental exploration effort. This will lead to an alternate path to the goal, provided that it exists (e.g. trial 5 - Fig. 9(c)). Although in some cases the method may be able to take advantage of situations of class 2, this does not hold in general. If the robot has already learned a stable path to the goal, then the system will not take advantage of a possibly smaller path that, after the removal of an obstacle, has become available to reach the goal (e.g. trial 4 - Fig. 9(b)). However, if no current solution path exists, or if a new obstacle is created obstructing the current solution (e.g. trial 5 - Fig. 9(c)), then the newly created free space becomes available to be used in an incremental exploration effort that is induced (e.g. Fig. 9(c)). This effort will lead to an alternate, possibly better, path to the goal provided that it exists. Note that, on the particular case of Trial 5, this was possible only after the system has split cells, and thus forgotten previous local cells-outcomes information. This suggests that the introduction of a mechanism for merging cells could be useful to simplify the world model. In trial 7 the system has converged again to a new stable solution-path to the goal - Fig. 9(d). One interesting problem that remains open to further investigation, is the improvement of the algorithm, such that it is able to tackle changing environments in a more general way.

C. Integrating Fuzzy ART Map Building and POTF

Experiment 3 was similar to Experiment 1, except that: (1) the path to the goal was somewhat greater with the goal region set at 1.7m to the left, of its location on experiment 1, and (2) the Fuzzy ART map building approach of Section III was activated, and used to make predictive on-line trajectory filtering (POTF - Section IV). In Figs. 10(a)-(c) the efficient trajectories of the first 3 trials
of Experiment 3 can be observed, with very direct navigation to the goal starting from the very first trial. When comparing with Experiment 1, these results shown an improvement, and demonstrate that the introduction of the methods of Sections III, and IV, lead to a new and effective approach, for simultaneous model building, and learning to navigate a mobile robot on an unknown world. In Figs. 10(a)-(c), it can also be observed how the Fuzzy ART approach of Section III, was able to create a geometric-primitive-based map with the location of objects as they were perceived by the infrared range sensors. In both Experiments 3 and 4, sensor data filtering (Section III-B) was performed with sensor readings above 13 inches being rejected, and a filtering radius of $r_f = 67$ mm. On trial 2, a few rectangles are present in places, that are slightly apart from where the infrared sensors have perceived objects on this trial. There are 2 reasons for this: (1) slight differences in localization positions (e.g. from trial to trial) imply different locations for the perceived objects, and (2) the Fuzzy ART model has an accumulative nature, and currently is not able to detect and remove primitives from places where no objects are perceived anymore. In both Experiments 3 and 4, the system was configured to enter predictive mode (Section IV) at the end of every cell-aim, and to signal a predictive success after a predictive arrival at the goal cell. A border gap of 80% of the robot radius was used on the Fuzzy ART rectangles, when performing obstacle detection in predictive mode. Fig. 11(a) illustrates the predictive trajectories that were analyzed at the beginning of trial 2, even before any real robot motion. Since the robot enters predictive mode at the end of cell-aims, this is just a part of the predictive trajectories analyzed during trial 2. As can be seen, a considerable amount of predictive exploration takes place. This enables a significant decrease on the (more time consuming) exploration effort performed with the real robot.

Experiment 4 (Figs. 10(d)-(f)), used the same navigation controller that was used in Experiment 3, and is an additional experimental evidence of the effectiveness of the overall navigation method that was introduced in this paper. Note how the system is able to backtrack from the dead end at the upper-left corner of the world, and subsequently this area does not need to be visited by the real robot anymore. An effective use of the available sensor information is made, which leads to efficient navigation trajectories from the very first trial. The predictive trajectories at the beginning of trial 2 are shown in Fig. 11(b). Further discussion of the results of Experiment 4 would be very similar to the discussion of Experiment 3. Finally, we remark that, in all experiments, the computation time is only a small fraction (typically less than 1.3% - e.g. Section VI-D) of the total operation time that includes the
D. Quantitative Evaluation of POTF

For a quantitative evaluation of the POTF method (Section IV), two simulation experiments were performed, with the same environment and (Start,Goal) pair; The only difference was that only one experiment used POTF. Fig. 12 presents the environment, and the robot path on Trial 4 of the Experiment that used POTF. The state-space dimensions are $7.16 \text{m} \times 7.14 \text{m}$. Six performance indexes were selected for the evaluation: (1) The *Number of cells* is, for the same environment and navigation task, a measure of the world modeling difficulties faced to successfully navigate to the goal. It is also a measure of the “over-partitioning” effort. (2) The *Traveling*, is a measure of the robot traveling distance. (3) The (number of) *Aims*, is a measure of both the exploration effort, and the computational costs. At a level more abstract than the “Traveling”, it is also a measure of traveling effort. (4) *Aim Fails*, is the percentage of “Aims” that failed because either the robot became stuck due to an obstacle, or it attained a cell other than the aimed one. It is a measure of the exploration difficulties. (5) *Time* represents the total time of the trials, thus taking into account all the robot motion time. (6) The *CPU Time*, strictly represents the computational time used by the learning methods described in Sections II to IV.

Table I presents the “trial-cumulative” values of the performance indexes. From Table I, it is seen that the “quality” of the final solution obtained, as measured in terms of a final traveling path of approximately 18 m in both Experiments, was quite similar. However, the introduction of the POTF method enabled a strong decrease of all the performance indexes. These results show that the introduction of POTF allowed a strong improvement on the navigation approach, expressed in lower modeling difficulties, exploration effort, computational time, and total elapsed time to achieve the solution. In particular note that (1) within the lower number of Aims performed, the percentage of Aim Fails also decreased, and (2) the CPU Time is only a small fraction (less than 1.3%) of the total navigation time.

VII. Discussion

Future work on Fuzzy ART map building includes relevant aspects of model updatability which, at present state, have not yet been considered: the division, pruning (an obstacle may be no longer present), and dynamic adjustment of geometric primitives in order to better model the world data. From the point of view of the Fuzzy ART method, it will not be difficult to delete geometric primitives. Thus, we are optimistic on the feasibility of overcoming the above aspects (especially pruning), provided that suitable tests are integrated to detect the two situations. This optimism is further supported by the fact that the Fuzzy ART world...
model may be used to make (sensor) measurement predictions; And real sensor readings may be compared with predictions to decide if a related primitive is still necessary to represent occupied space in the world. This would be especially useful in non-static worlds. See Section III for the discussion on another aspect of updatability, where Fuzzy ART is clearly strong. Exploring the application of the Fuzzy ART world model for place recognition and localization is another line of future research.

On Fig. 8(a), but mainly on Fig. 8(b), we observe that some obstacles are slanted, both in absolute and relative terms, when compared to Figs. 8(c) and 8(d). The reason for this is that, a simple encoder accumulation method was used for robot localization. This leads to error accumulation. The location accumulators were set to correct values at the beginning of each trial. The greater amounts of motion on the first two trials cause greater localization errors on these trials. The localization error has four negative effects: (1) It causes errors on the absolute position where the robot perceives obstacles. From the figures we can roughly say that the most important errors are on the orientation component. (2) If the localization error grows too much, the current cell will not be correctly known. Thus (3) the robot will not chose the best next cell to aim, but (4) even if the chosen next cell is not “too bad”, the robot will not be able to move towards its actual center. The relative slant (twisting) observed within a trial, is due to the fact that, different obstacles are perceived, after the robot has accumulated different errors. In spite of these localization errors, the robot was still able to learn to navigate to the goal. Also note that the lower exploration efforts enabled by the introduction of POTF (Sections IV, and VI-C), lead to a reduction on the severity of the localization error problem without, however, solving it. The methods discussed in this paper, have been successfully tested in other environments. However, the localization problem is currently the main limitation, for taking advantage of the full potential of these methods, and preventing the application to large scale environments when the localization error grows too much. Taking full advantage, requires the development and integration of general and robust localization methods. Localization is an area of current active research (e.g. [28]).

Kambhampati and Davis [17] proposed a multiresolution partition method, that is able to find paths in environments for which there is a binary occupancy grid world model a priori available. Our work differs in learning its own world model from experience. Zelinsky [31], proposed a variable resolution approach that integrates both environment modeling, and path planning using the distance transform. If the robot encounters an obstacle obstructing its path, the world model is updated to reflect the presence of the freshly sensed obstacle. Our work differs in also integrating a geometric primitive model, that is continuously updated to model occupied space, and that is later used for replanning if an obstacle is encountered. Also, the work of Zelinsky incorporates a mechanism for controlling the degree of exploration, by making the system favor paths in known or unknown areas of the world.

Equation (1) models the topological distance between neighboring cells to be 1. This distance serves as a measure of the associated traveling effort. Since the cells have different sizes, then it is reasonable to expect that the algorithm would probably be able to chose a better approximation of the geometrical shortest path (GSP) to the goal if the topological distance between neighboring cells i and k was made a function, d_{ik}, of an expected geometrical traveling distance. For this purpose, d_{ik} could be made dependent on a suitable measure of the sizes of cells i, and k, and equation (1) would be rewritten as follows:

$$J_{WC}(i) = \begin{cases} 0, & \text{if } i = \text{GOAL (i.e.: 0)}, \\ \min_{j \in \text{NEIGHS}(i)} \max_{k \in \text{OUTCOMES}(i,j)} [d_{ik} + J_{WC}(k)] \end{cases}$$

This requires additional computational cost, but could enable the achievement of a GSP, for/in the current world partition. On the other hand, the attainment of an absolute GSP is somewhat limited by (1) the current partition that depends on how the overall method evolves in the particular world being faced; And (2) on the fact that the partition stops being split as soon as a final robust path to the goal is found. Intuitive experience revealed that, by using equation (1), the method is generally able to find very reasonable paths in human terms, and significant advantages would require quite special situations. Also, the use of (1) favors a top down search of the world, i.e. makes the system analyze big areas before being concerned with very detailed paths on very small escaping holes. However, more definitive conclusions require further investigation.

In real world problems it is usually not difficult to establish a known region that completely encompasses the robot environment. Thus assumption (5) of Section II, is not a severe limitation for most applications. However, note that if the environment is grow with a new region, then it is trivial to include that region on the state-space - it suffices to include one or two new cells (the number depends on the new region) into the partition. It is also easy to make a compatible change on the Fuzzy ART model.

VIII. Conclusion

In this paper we have applied the parti-game learning approach to navigate a mobile robot, on unknown environments. A new approach, based on the application of the Fuzzy ART neural architecture, has been introduced for sensor-based on-line map building. This method was then integrated, as a complement, on the parti-game model, allowing the system to make a more efficient use of sensor information. Using the improved world model, a predictive on-line trajectory filtering method was introduced, in order to improve path planning and reduce, exploration costs. This resulted on an overall new improved method for incremental, and cooperative construction of a world model, and learning to navigate from an initial position to a goal region. Results of experiments demonstrated the application of the described methods to a real mobile robot.
REFERENCES

