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Abstract—This paper presents a novel approach for detecting
drones using a lidar sensor integrated on a robotic turret. The
turret rotates allowing the sensor to scan the sky, and both
hardware components communicate in real-time. When the lidar
sensor detects a drone, the detection data is used to dynamically
adjust the motion pattern of the turret, allowing the system to
capture more data by orienting the lidar sensor towards the
drone, eventually improving tracking accuracy thanks to the
higher number of detections achieved in this manner. In this
paper we also explore different motion patterns for the turret,
comparing them on the field to track a drone using the built
lidar-turret system.

Index Terms—UAYV, drone, detection, lidar, turret

I. INTRODUCTION

In recent years, drones, also known as Unmanned Aerial
Vehicles (UAVs), have seen widespread adoption, becoming
increasingly common in civilian use across many countries for
various applications. Small size, which allows easy carrying,
user-friendly design, versatility of usage and improvements in
related technologies, such as battery life, camera quality and
stability during the flight, are key factors that contributed to
this spreading. This can also be seen as a transformation from
a military hardware to a civilian gadget and as a testament
of how fast the technology is evolving. Since drones can
easily be deployed for aerial images and videos, the private
outdoor of one’s house can be spied from the sky leading
to direct violation of privacy [1]-[3]. The very low level of
noise emitted by a drone both during take-off and during
flight reduces the possibility of being noticed by unsuspecting
citizens, facilitating even worse scenarios, such as that a crime
can be committed without the victim ever noticing [4]. There
have been cases of more dangerous drone usage in the past
years, varying from destroying facilities, with repercussions on
the worldwide economy [5], to killing people [6]—[8], or trying
to kill [9]. To address these problems, the malicious drones
should be at first detected and then somehow neutralized. In
this work, we focus on the first part.
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The research in this field led to different methods and
sensors for drone detection, such as acoustic sensors, visible
wavelength cameras, thermal infrared cameras, radar and lidar.
Using acoustic sensors is a very cost-effective approach,
because these sensors are most of the times cheaper than radars
or thermal cameras. They also have weather resilience mainly
to fog and change in light but also partially to rain, none
interfering significantly with detections. However, the main
obstacles to effective use of acoustic sensors are the presence
of background noises, limited range and accuracy, and diffi-
culty in detecting when multiple drones are flying at same time
in the same environment [10]-[13]. Thermal infrared cameras
allow the detection in conditions with low light intensity, for
example during night flights outdoors or dark environments
in closed environments. The thermal signatures are emitted
primarily by batteries and in lower quantity, also by motors
of the drones. Despite this advantage, infrared cameras have
limited range of detection, and the possibility of interference
with thermal sources from the background environment must
be taken into account before choosing this solution [14], [15].

Continuous Wave Radar (CWR) is one of the most used
methods to detect drones. It is affected neither by light inten-
sity nor by weather conditions, so it is possible to detect drones
with this method also during night and also under adverse
weather conditions [16]. A CWR works by continuously
transmitting an RF (Radio Frequency) signal which bounces
back towards the radar when it encounters obstacles on its
way. The CWR, upon receiving the reflected signals, analyzes
the phase difference between the sent and received signals and
hence determines the presence, the distance and the speed of
the detected objects. CWRs allow a reliable measurement of
the position even for moving objects. However, CWRs are sen-
sitive to interference, which can lead to false positives. These
false positives may be difficult to address in environments with
a high density of obstacles, such as city centers, rendering
them less suitable for applications in such environments [17],
[18]. Lidars are sensors that can detect and very accurately
localize drones during day and night. Previous works have
proven the efficiency of lidar in tracking small drones due to
the scanning performance and due to the range in which it can
acquire data, ensuring that it is possible to protect an objective
from drone threats in close range [19]. It was also shown that
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lidars can be used to detect drones in ranges reaching 100 m
[20]. However, performance of lidars deteriorates in foggy
conditions. Another disadvantage of lidars is being able to
instrument only a very small portion of the sky at a moment.
Although this disadvantage is partially solved using 3D lidars
with a high number of beams, they still leave parts of the
sky unscanned, particularly at long ranges. It has been shown
that a single frame may not provide enough data to detect a
drone due to the resolution of the sensor [21]. A large amount
of frames should be captured to accurately track the drone
path, but it may not always be visible while flying in the
sky. This paper uses a 3D lidar to detect and track drones,
focusing on addressing the last disadvantage, particularly for
tracking purposes. To accomplish this, a 3D lidar was installed
on a robotic turret—also known as Pan-Tilt Unit (PTU)—with
both the lidar and the PTU being controlled via a computer.
In order to improve tracking performance, we propose several
motion patterns for the turret and study their performance. We
use a standard sweeping motion, in which the turret scans a
predefined angular range at constant speed, as the baseline.
Then we propose the following three motion patterns

o Swinging, the lidar rotates in a small range around the
detected point

o Stopping, the lidar rests in the position in which the
detection occurred

o Slowing down, the lidar after the detection rotates at a
lower speed

All these types of motion are aimed at maintaining the drone
visible to the lidar for longer, i.e. keeping it inside its field of
view, and so they are aimed at capturing more frames of the
drone moving in the environment, hopefully leading to better
tracking performance.

II. RELATED WORK

A reliable approach for detecting and tracking drones in-
volves block-wise features and statistical analysis to capture
acoustic signals emitted from drones [10]. From these audio
signals it is possible to extract key features such as Short
Time Energy, which contains the energy of small segments
of the signal to analyze the variation of the intensity over
time, Temporal Centroid to identify where the largest fraction
of sound energy is concentrated, Zero Crossing Rate to count
how many times the signal crosses the zero line and Mel-
Frequency Cepstral Coefficients that contain the spectrum of
the sound. These quantities are computed in short time periods
(around 20 ms). After this first step, classification starts by
using a one-class SVM (Support Vector Machine) where the
largest amount of training data belongs to the drone acoustic
emissions class and the objective is to keep them and get
rid of the data belonging to the other class, which represent
mostly the background noises. The one-class SVM learns the
distribution of the drone acoustic emissions and constructs a
boundary around this data in a higher-dimensional space. It
then classifies new data points based on whether they fall
inside or outside this boundary, aiming to identify and reject

outliers effectively. The goal is to minimize false positives and
maximize true positive detections of the drone.

Another solution for drone detection is represented by CWR
with the integration of Gaussian Mixture Model (GMM) [17].
The Radar continuously emits waves and collects data from the
scanned environment, capturing both the positions of the fixed
object and the moving ones, namely the drones. The GMM
proceeds by modeling the background, which consists of
processing the real-time data and constructing a probabilistic
model of the background environment by using image pixels
caught by the radar over time. The incoming radar pixels
are classified based on their likelihood of belonging to the
constructed background model. The ones that are considered to
be inconsistent from the background are deemed to potentially
be part of the drone. This step is done by setting a certain
threshold to differentiate the drone from the background,
generating a binary mask. During the post-processing part,
the mask is refined to reduce noise and improve interference
filtering.

Abir et al. [22] investigated the potential of applying a lidar
sensor to detect and track drones under different conditions of
the environment, paying particular attention to the intensity
of the light and to the weather. Another factor that has been
analyzed was the effect of drone size, shape and reflectivity
on the lidar detections. In particular it came out that UAVs
with higher reflectivity, such as the ones with lighter colors
or with specific surface properties (such as details in metallic
material), are easier to be detected than the ones character-
ized by dark and less reflective surfaces. Another factor that
plays a significant role is the surface roughness: a smoother
surface reflects more uniformly the incoming beams from the
lidar, avoiding the unpredictable scattering seen with drones
characterized by low surface finish. Uniform reflection is the
key that makes drones with smoother surfaces easier to detect.
Moreover, it is highlighted the good behavior of the lidar in
real-time tracking, making it suitable for a wide range of fields
[20], [23].

III. BACKGROUND
A. Lidar Sensor

A 3D lidar emits a large amount of pulses per second,
it can measure the distance to multiple points and generate
a point cloud that maps out the shape of the surrounding
environment [24], [25]. Each point of the cloud has an own set
of coordinates and it represents a portion of scanned object’s
surface. The point cloud is then processed for analysis, 3D
reconstruction and modeling.

Some of the multibeam lidars use the same pulse sequence
to fire the different sensors in the housing [25]. Fig. 1 shows
the pulses, which also correspond to the firing sequence,
of the VLP-16 lidar from Velodyne. Each of the 16 lasers
are emitted and recharged once every 55.296 us. Specifically,
every 2.304 us one of the laser sensors is fired, followed by
an idle period of 18.43 us, resulting in a complete cycle time
of 55.296 us for all lasers.
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Fig. 2: (a) PTU with the lidar, and the corresponding world
coordinates. (b) The PTU, the drone and the corresponding
world coordinates.

B. Detection

A 3D lidar scans the environment in its vertical and horizon-
tal axes, providing much denser measurements in the second
(Fig. 3). In our setup, the lidar is placed vertically on a pan-
tilt unit (Fig. 2a). In this setup 6 represents the rotation of the
turret around the z-axis (pan motion of the PTU), which we
also refer to as yaw motion of the lidar, and ¢ represents the
internal rotation of the lidar, which we also refer as the pitch
axis (Fig. 2a).

The term detection refers to the ability of the lidar sensor to
collect at least one data point from a flying drone. Due to the
sparsity of the beams in both the vertical and horizontal axes
and the pulsed nature mentioned above, detections are sparse
and hence it is crucial to highlight the conditions that must be
met for a detection to occur.

For detections to occur 3 conditions have to be met. One
of the horizontal planes containing a beam of the lidar have
to be aligned with the drone, the beam should align with the
drone, and the beam should be fired. In other words the yaw
angle of the beam and the azimuth angle of the drone with
respect to the base should be almost equal, the pitch angle of
the beam and the elevation angle of the drone with respect
to the base should be almost equal, and the beam should be
ON when the previous two conditions are met. The amount of
almost equal depends on the size of the drone, and also size
of the lidar beam.

In Fig. 4 we present an example for the conditions of
detection. Fig. 4a illustrates the evolution of both the PTU pan
angle and the drone azimuth angle over time during one of our
field tests. The red path is taken from the ArduPilot logs from
the drone itself, while the blue saw tooth plot represents the

(a) (b)

Fig. 3: (a) Partial view of the top of the lidar, with red showing
the beams as the sensor inside the lidar rotates. (b) Side view
of the lidar showing the 16 vertical beams in different planes.

yaw angle of the PTU, corresponding to one of the horizontal
beams. At the time the PTU was sweeping left right at a
constant speed. The plot can be divided into two sections: We
are particularly interested in the intersections between the blue
and red curves, as these represent the instances when the PTU,
and thus the lidar mounted on top of it, is oriented towards the
drone. Around 24 intersections can be seen in Fig. 4a. Closing
in (Fig. 4b) we observe 4 intersections in a 22 s time window.
Comparing the elevation angle of the drone and pitch angle
of the beam with respect to the base (Fig. 4c, we observe
intersections only at ¢ = 231.683 s. The red path, representing
the drone elevation angle, appears flat in Fig. 4c because it
displays a very short time period, about 0.02s. Fig. 4e shows
the last condition, where the pulse time and the intersections
are matching, leading to a detection.

IV. METHOD

To achieve our goal, the first stage is the detection of the
target of interest. This step is followed by tracking process,
meant as the continuous estimation of the target’s position,
whose estimate will be optimized by dynamically modifying
the type of motion to which the lidar is subjected. The process
aims at maximizing the number of times the drone remains
inside the field of view of the lidar, ensuring it is visible for
as long as possible. The current section will provide a detailed
explanation of the working principles of each component,
with a particular focus on the interactions between them. This
includes the hardware components, ROS nodes, and the data
exchanged between them. The implementation of the detection
and identification mechanisms, alongside with the integration
with the overall system, will be highlighted.

To facilitate the understanding of the components and
their interactions, a block diagram is presented in Fig. 5. It
illustrates the sequence and relationship between the various
elements of the drone tracking system.

A. Filter

The Filter & Cluster block takes as input the point cloud
from the lidar and processes it through two consecutive
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Fig. 4: (a) PTU pan angle and drone azimuth angle over time,
(b) PTU pan angle and drone azimuth angle over time, zoom
in, (c, d) lidar internal spin motion angle and drone elevation
angle over time, zoom in at different scales, (e) lidar laser
pulse firings, zoom in

filtering actions, namely an XYZ filter and a convex hull filter.
The XYZ filter applies a quick thresholding to remove points
that are not inside the Area of Interest (Aol). Then the left
over points are passed through the convex hull filter, which
accurately delineates the Aol. The Aol was selected large
enough to contain the testing area of the drone, and these filters
allow a quick way to remove the buildings, the trees, the street
lamps and the ground in the outdoor testing area. Then left
out clusters of point cloud are found and their centroids are
calculated.

B. Controller

The controller supports 4 different types of motion patterns:

o Sweeping This is the default motion pattern. The PTU
continuously sweeps an angular range large enough to
contain all the Aol.

Point Cloud

Filter & Cluster

Filtered Point Cloud

Centroids

N

Fig. 5: Flowchart of the lidar data processing system

Controller

Motion Command

Tracking

o Swinging The PTU oscillates between two closely spaced
angles. These angles are found to be +dJ—around the
azimuth angle of the drone with respect to the base of the
PTU. The swinging happens a predefined n times, then
Sweeping resumes.

e Slow Down The PTU’s speed is reduced by a scale factor,
for A degrees. Then Sweeping resumes.

o Stop, stops the turret motion for At seconds before
resuming its Sweeping rotation.

The last three motion patterns are triggered by a detection in
the lidar, and at the end normal sweeping motion resumes.

C. Tracking

The tracking node receives the centroid lidar data, and using
this it constructs a track of the target drone. The first detection
provides the position of the drone, and subsequent detections
help improve accuracy of the position estimate and they also
allow estimation of the speed. Taking into account the high
accuracy of the lidar’s measurements, which result in accurate
pose measurements, the tracking problem is assumed to be
linear and hence a Kalman Filter is used for tracking. A
constant speed model was used for the drone in this work.
The filter is initialized with the centroid position, and then
it alternates between prediction and update phases on each
new measurement to refine the estimated state. The prediction
phase uses a state transition model to predict the next state
based on the previous state and the elapsed time. In the update
phase, the filter incorporates the latest centroid measurement
to correct the predicted state. In this work the state is defined
to contain the position and velocity of the drone in 3D space,
represented as a 6-dimensional vector, x. Tracking block also
includes a mechanism to handle lost detections by checking
the covariance matrix and elapsed time since the last detection.
If the system detects that the object is lost, it re-initializes the



Fig. 6: (a) Sky Hero Spyder X4 drone (b) Tracking system

filter when a new centroid is detected. The filter equations are
as follows:

Tp—1 = Fop_ 11 (D
Pyp1 = FP 11 FT+Q (2)
e = zp—H- Tpp 3)

S = HPy H"+R @)

K = Py -H'S™ (5)
Ty = Tgp-1+ Ke (6)
Py = (I—K -H)Pyi @)

The predicted state estimate at time k given observations
up to time k — 1 is represented by Ty ,_;, while Pk|k,1
denotes the predicted error covariance matrix. The state
transition matrix F' describes how the state evolves from
the previous time step, and the process noise covariance
matrix ¢ = diag(0.01,0.01,0.01,0.01,0.01,0.01) captures
uncertainty due to process noise. The innovation, or mea-
surement residual e, quantifies the difference between the
actual measurement z; and the predicted measurement. The
observation matrix H relates the state to the observed mea-
surements, and the innovation covariance matrix S assesses
uncertainty, influenced by the measurement noise covariance
R = diag((1)?, (1)%,(0.2)?). The Kalman gain K determines
how much the predicted state estimate is adjusted based on the
measurement residual, while the identity matrix [ is used in
calculating the updated error covariance. After incorporating
2k, the updated state estimate at time k is given by Iy,
and the corresponding updated error covariance matrix is
represented by Pk| k-

V. EXPERIMENTAL SETUP

In this work a Sky Hero Spyder X4 with a 0.85-meter
carbon fiber frame was used as the target drone (Fig. 6a). The
drone has a Drotek DP0601 GNSS receiver with an external
GNSS antenna, a Drotek RM3100 compass and two inertial
measurement units (IMUs).

For detection, a three component system consisting of a
pan-tilt unit, a 3D lidar and a 3D printed support was used
(Fig. 6b). The PTU supports up to 4 kg payload, achieves
speeds higher than 300° per second, with a resolution of
about 0.129°. The lidar is a VLP-16 from Velodyne, with

100 m range, and 360° horizontal and 32° vertical field of
view. The described method was implemented using C++ and
ROS framework, with each block being a different ROS node.
The drone itself was flown along the same pre-programmed
trajectory for each test. The experiment data was saved as bag
files and csv files, allowing later replay of the mission plot of
the results.

VI. RESULTS AND DISCUSSIONS

O Centroids
EKF estimated path
Detections

Drone real path

Fig. 7: Tracking of drone path, with swinging motion

Fig. 7 shows the path of the drone (taken from GNSS), the
corresponding laser detections and the path estimated using
KF for one of the test runs on the field during a test flight
tracked with the swinging motion. The cyan points represent
all the points that are selected during the filtering step, while
the black circles figure the centroids. When detections are
denser, the KF provides a more accurate path because a higher
number of received centroids leads to increase in the frequency
of the update steps: each of them refines the state estimate
by including new measurements, reducing uncertainty and
improving the precision of the drone’s estimated path.

Fig. 8 and Fig. 9 show how the drone’s position evolves
along the XYZ coordinates with respect to time for different
PTU motion patterns.

It is noticeable that the magenta path, indicating the esti-
mated drone path by the KF, is smoother in the swinging case
shown in Fig.8, with fewer jumps. This can be explained by
the fact that a higher number of update steps allows for a more
precise estimation of the drone’s movement, resulting in better
tracking.

Another analysis can be conducted on the density of detec-
tions over time, highlighting how many of the 16 beams are
detecting the drone. The more beams detecting the drone, the
more accurate the estimated data will be. This data is presented
for the first half of the flights in Fig. 10. In these four flights
the drone performed the same missions (shown in Fig. 7), and
hence the detections are comparable for the different motion
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Fig. 9: Tracking over time, sweeping approach

patterns of the PTU. A common trend is visible in all motion
patterns. Detections are more concentrated at the beginning,
because the drone took off in front of the lidar at a short
distance and moved away. Close take-off made it easy to detect
frequently and with a high number of beams. As the drone
moved further away from the sensor, it was harder to detect
due to the spacial sparsity of the beams, resulting in a lower
number of detections.

Comparing the graphs, it is evident that different motion pat-
terns result in different detection density and patterns. Sweep-
ing can be seen to detect more uniformly but also have fewer
detections. Stop can be seen to detect for longer at a time, but
it is less uniform. This observation is supported also by the
number of detections presented on Table I. Stopping reports
4871 detections whereas Sweeping reports 2564 detections.
On the other hand, the maximum time between detections
is 10.6 s for Stopping and 8.2s for Sweeping. Swinging and

TABLE I: Performance of Different Detection Strategies

Sweeping | Swinging S:i%\::;lg Stopping
Number of detections 2564 3182 3615 4871
Time between detections
Minimum (s) 0.0717 0.0650 0.0637 0.0665
Maximum (s) 8.21 6.95 7.29 10.6
Mean (s) 0.409 0.303 0.286 0.208
3D Estimate Error (m) 3.23 1.44 1.56 1.50
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Fig. 10: Number of detections for different motion patterns of
the PTU (a) sweeping (b) swinging (c) slow down (d) stop

Slowing down report more detections than Sweeping and less
than Stopping and they both excel in reducing maximum time
between detections, at 6.9s and 7.3 s respectively.

Table I also shows the mean error in the estimated position
of the drone, calculated comparing the GNSS position (xgnss)
of the drone with the KF position (zgg) using the formula

N
1
d=+ ; |zkF — Zoss | ®)

Sweeping can be seen to have the worst average estimate
error, whereas the other three strategies have an error around
1.5m, with Swinging achieving the best tracking performance
of 1.44m.




VII. CONCLUSION

The research presented in this paper focused on the op-
timization of drone tracking using lidar sensor, specifically
exploring the efficacy of different motion patterns: sweeping,
swinging, slow-down, and stopping, from which swinging
emerges as the most effective strategy in terms of estimation
error. This motion pattern enhances detection by concentrating
the lidar’s scanning action on the specific area around the
drone position, consequently improving tracking accuracy and
reducing uncertainty in position estimation. We plan to test
further the proposed motion strategies, validating them for
more complex drone paths.
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